Free Access
Med Sci (Paris)
Volume 26, Number 3, Mars 2010
Page(s) 251 - 258
Section M/S revues
Published online 15 March 2010
  1. Kemphues KJ, Priess JR, Morton DG, Cheng NS. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 1988; 52 : 311–20. [Google Scholar]
  2. Goldstein B, Hird SN. Specification of the anteroposterior axis in Caenorhabditis elegans. Development 1996; 122 : 1467–74. [Google Scholar]
  3. Munro E, Nance J, Priess JR. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev Cell 2004; 7 : 413–24. [Google Scholar]
  4. Cheeks RJ, Canman JC, Gabriel WN, et al. C. elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes. Curr Biol 2004; 14 : 851–62. [Google Scholar]
  5. Morton DG, Shakes DC, Nugent S, et al. The Caenorhabditis elegans par-5 gene encodes a 14-3-3 protein required for cellular asymmetry in the early embryo. Dev Biol 2002; 241 : 47–58. [Google Scholar]
  6. Cuenca AA, Schetter A, Aceto D, et al. Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development 2003; 130 : 1255–65. [Google Scholar]
  7. Doe CQ. Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system. Development 1992; 116 : 855–63. [Google Scholar]
  8. Schober M, Schaefer M, Knoblich JA. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 1999; 402 : 548–51. [Google Scholar]
  9. Lu B, Rothenberg M, Jan LY, Jan YN. Partner of Numb colocalizes with Numb during mitosis and directs Numb asymmetric localization in Drosophila neural and muscle progenitors. Cell 1998; 95 : 225–35. [Google Scholar]
  10. Kuang S, Kuroda K, Le Grand F, Rudnicki MA. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 2007; 129 : 999–1010. [Google Scholar]
  11. Shinin V, Gayraud-Morel B, Gomes D, Tajbakhsh S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 2006; 8 : 677–87. [Google Scholar]
  12. Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 2004; 7 : 136–44. [Google Scholar]
  13. Wu M, Kwon HY, Rattis F, et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell 2007; 1 : 541–54. [Google Scholar]
  14. Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 2005; 437 : 275–80. [Google Scholar]
  15. Costa MR, Wen G, Lepier A, et al. Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development 2008; 135 : 11–22. [Google Scholar]
  16. Labbé JC, McCarthy EK, Goldstein B. The forces that position a mitotic spindle asymmetrically are tethered until after the time of spindle assembly. J Cell Biol 2004; 167 : 245–56. [Google Scholar]
  17. Gotta M, Ahringer J. Distinct roles for Galpha and Gbetagamma in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nat Cell Biol 2001; 3 : 297–300. [Google Scholar]
  18. Srinivasan DG, Fisk RM, Xu H, van den Heuvel S. A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans. Genes Dev 2003; 17 : 1225–39. [Google Scholar]
  19. Schaefer M, Shevchenko A, Knoblich JA. A protein complex containing Inscuteable and the Galpha-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr Biol 2000; 10 : 353–62. [Google Scholar]
  20. Wodarz A, Ramrath A, Kuchinke U, Knust E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 1999; 402 : 544–7. [Google Scholar]
  21. Sanada K, Tsai LH. G protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 2005; 122 : 119–31. [Google Scholar]
  22. Zigman M, Cayouette M, Charalambous C, et al. Mammalian inscuteable regulates spindle orientation and cell fate in the developing retina. Neuron 2005; 48 : 539–45. [Google Scholar]
  23. Mello CC, Schubert C, Draper B, et al. The PIE-1 protein and germline specification in C. elegans embryos.Nature 1996; 382 : 710–2. [Google Scholar]
  24. Strome S, Wood WB. Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos. Cell 1983; 35 : 15–25. [Google Scholar]
  25. Reese KJ, Dunn MA, Waddle JA, Seydoux G. Asymmetric segregation of PIE-1 in C. elegans is mediated by two complementary mechanisms that act through separate PIE-1 protein domains. Mol Cell 2000; 6 : 445–55. [Google Scholar]
  26. Betschinger J, Mechtler K, Knoblich JA. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 2003; 422 : 326–30. [Google Scholar]
  27. Guo M, Jan LY, Jan YN. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 1996; 17 : 27–41. [Google Scholar]
  28. Choksi SP, Southall TD, Bossing T, et al. Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev Cell 2006; 11 : 775–89. [Google Scholar]
  29. Betschinger J, Mechtler K, Knoblich JA. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 2006; 124 : 1241–53. [Google Scholar]
  30. Lee CY, Wilkinson BD, Siegrist SE, et al. Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev Cell 2006; 10 : 441–9. [Google Scholar]
  31. Hyenne V, Desrosiers M, Labbé JC. C. elegans Brat homologs regulate PAR protein-dependent polarity and asymmetric cell division. Dev Biol 2008; 321 : 368–78. [Google Scholar]
  32. Caussinus E, Gonzalez C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 2005; 37 : 1125–9. [Google Scholar]
  33. Lee CY, Robinson KJ, Doe CQ. Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation.Nature 2006; 439 : 594–8. [Google Scholar]
  34. Bowman SK, Neumuller RA, Novatchkova M, et al. The Drosophila NuMA Homolog Mud regulates spindle orientation in asymmetric cell division. Dev Cell 2006; 10 : 731–42. [Google Scholar]
  35. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3 : 730–7. [Google Scholar]
  36. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100 : 3983–8. [Google Scholar]
  37. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63 : 5821–8. [Google Scholar]
  38. Gönczy P. Mechanisms of cell division: lessons from a nematode. Med Sci (Paris) 2003; 19 : 735–42 [Google Scholar]
  39. Ségalen M, David N, Bellaïche Y. The heterotrimeric G proteins during asymmetric cell division in Drosophila. Med Sci (Paris) 2006; 22 : 243–6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.