Free Access
Med Sci (Paris)
Volume 26, Number 1, Janvier 2010
Page(s) 38 - 41
Section Nouvelles
Published online 15 January 2010
  1. Dominski Z, Kole R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci USA 1993; 90 : 8673–77. [Google Scholar]
  2. Bauman J, Jearawiriyapaisarn N, Kole R. Therapeutic potential of splice-switching oligonucleotides. Oligonucleotides 2009; 19 :1–14. [Google Scholar]
  3. Lebleu B, Moulton HM, Abes R, et al. Cell penetrating peptide conjugates of steric block oligonucleotides. Adv Drug Deliv Rev 2008; 60 : 517–29. [Google Scholar]
  4. Aartsma-Rus A, Van Vliet L, Hirschi M, et al. Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Ther 2009; 17 : 548–553. [Google Scholar]
  5. Tazi J, Bakkour N, Stamm, S. Alternative splicing and disease. Biochim Biophys Acta 2009; 1792 : 14–26. [Google Scholar]
  6. Van Ommen GJ, van Deutekom J, Aartsma-Rus A. The therapeutic potential of antisense-mediated exon skipping. Curr Opin Mol Ther 2008; 10 : 140–9. [Google Scholar]
  7. Yokota T, Takeda S, Lu QL, et al. A renaissance for antisense oligonucleotide drugs in neurology: exon skipping breaks new ground. Arch Neurol 2009; 66 : 32–8. [Google Scholar]
  8. Van Deutekom JC, Janson AA, Ginjaar IB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007; 357 : 2677–86. [Google Scholar]
  9. Kinali M, Arechavala-Gomeza V, Feng L, et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. The Lancet Neurology 2009; 8 : 918–28. [Google Scholar]
  10. Forget BG. Molecular mechanisms of beta-thalassemia. In : Steinberg MH, Forget BG, Higgs DR, Nagel RL, eds. Disorders of hemoglobin. Cambridge : Cambridge University Press 2001 : 252–66. [Google Scholar]
  11. Xie SY, Ren ZR, Zhang JZ, et al. Restoration of the balanced alpha/beta-globin gene expression in beta 654-thalassemia mice using combined RNAi and antisense RNA approach. Hum Mol Genet 2007; 16 : 2616–25. [Google Scholar]
  12. Svasti S, Suwanmanee T, Fucharoen, S, et al. RNA repair restores hemoglobin expression in IVS2-654 thalassemic mice. Proc Natl Acad Sci USA 2009; 106 : 1205–10. [Google Scholar]
  13. HbVar. [Google Scholar]
  14. Hayakawa J, Ueda T, Lisowski, et al. Transient in vivo beta-globin production after lentiviral gene transfer to hematopoietic stem cells in the nonhuman primate. Hum Gene Ther 2009; 20 : 563–72. [Google Scholar]
  15. Huang SZ, Zeng FY, Ren ZR, et al. RNA transcripts of the beta-thalassaemia allele IVS-2-654 C->T: a small amount of normally processed beta-globin mRNA is still produced from the mutant gene. Br J Haematol 1994; 88 : 541–6. [Google Scholar]
  16. Lacerra G, Sierakowska H, Carestia C, et al. Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc Natl Acad Sci USA 2000; 97 : 9591–6. [Google Scholar]
  17. Gong L, Gu XF, Chen YD. Reversal of aberrant splicing of beta-thalassaemia allele (IVS-2-654 C-->T) by antisense RNA expression vector in cultured human erythroid cells. Br J Haematol 2000; 111 : 351–8. [Google Scholar]
  18. Suwanmanee T, Sierakowska H, Lacerra R, et al. Restoration of human beta-globin gene expression in murine and human IVS2-654 thalassemic erythroid cells by free uptake of antisense oligonucleotides. Mol Pharmacol 2002; 62 : 545–53. [Google Scholar]
  19. Vacek MM, Ma H, Gemignani F, et al. High-level expression of hemoglobin in a human thalassemic erythroid progenitor cells following lentiviral vector delivery of an antisense snRNA. Blood 2003; 101 : 104–11. [Google Scholar]
  20. Lewis J, Yang B, Kim R, et al. A common human beta globin splicing mutation modeled in mice. Blood 1998; 91 : 2152–6. [Google Scholar]
  21. Gorman L, Suter D, Emerick V, et al. Stable alteration of pre-mRNA splicing patterns by modified U7 small nuclear RNAs. Proc Natl Acad Sci USA 1998; 95 : 4929–34. [Google Scholar]
  22. Goyenvalle A, Vulin A, Fougerousse F, et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 2004; 306 : 1796–9. [Google Scholar]
  23. Benchaouir R, Meregalli M, Farini A, et al. Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell 2007; 1 : 646–57. [Google Scholar]
  24. Yokota T, Lu QL, Partridge, et al. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 2009; 65 : 667–76. [Google Scholar]
  25. Kaplan JC, Chelly J, Garcia L. Un saut symbolique mais encourageant dans le traitement de la myopathie de Duchenne. Med Sci (Paris) 2008; 24 : 215–7. [Google Scholar]
  26. Goyenvalle A, Vulin A, Fougerousse F, et al. Le saut d’exon thérapeutique : un espoir pour les dystrophinopathies. Med Sci (Paris) 2004; 20 : 1163–5. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.