Accès gratuit
Numéro
Med Sci (Paris)
Volume 26, Numéro 1, Janvier 2010
Page(s) 38 - 41
Section Nouvelles
DOI https://doi.org/10.1051/medsci/201026138
Publié en ligne 15 janvier 2010
  1. Dominski Z, Kole R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci USA 1993; 90 : 8673–77. [Google Scholar]
  2. Bauman J, Jearawiriyapaisarn N, Kole R. Therapeutic potential of splice-switching oligonucleotides. Oligonucleotides 2009; 19 :1–14. [Google Scholar]
  3. Lebleu B, Moulton HM, Abes R, et al. Cell penetrating peptide conjugates of steric block oligonucleotides. Adv Drug Deliv Rev 2008; 60 : 517–29. [Google Scholar]
  4. Aartsma-Rus A, Van Vliet L, Hirschi M, et al. Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Ther 2009; 17 : 548–553. [Google Scholar]
  5. Tazi J, Bakkour N, Stamm, S. Alternative splicing and disease. Biochim Biophys Acta 2009; 1792 : 14–26. [Google Scholar]
  6. Van Ommen GJ, van Deutekom J, Aartsma-Rus A. The therapeutic potential of antisense-mediated exon skipping. Curr Opin Mol Ther 2008; 10 : 140–9. [Google Scholar]
  7. Yokota T, Takeda S, Lu QL, et al. A renaissance for antisense oligonucleotide drugs in neurology: exon skipping breaks new ground. Arch Neurol 2009; 66 : 32–8. [Google Scholar]
  8. Van Deutekom JC, Janson AA, Ginjaar IB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007; 357 : 2677–86. [Google Scholar]
  9. Kinali M, Arechavala-Gomeza V, Feng L, et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. The Lancet Neurology 2009; 8 : 918–28. [Google Scholar]
  10. Forget BG. Molecular mechanisms of beta-thalassemia. In : Steinberg MH, Forget BG, Higgs DR, Nagel RL, eds. Disorders of hemoglobin. Cambridge : Cambridge University Press 2001 : 252–66. [Google Scholar]
  11. Xie SY, Ren ZR, Zhang JZ, et al. Restoration of the balanced alpha/beta-globin gene expression in beta 654-thalassemia mice using combined RNAi and antisense RNA approach. Hum Mol Genet 2007; 16 : 2616–25. [Google Scholar]
  12. Svasti S, Suwanmanee T, Fucharoen, S, et al. RNA repair restores hemoglobin expression in IVS2-654 thalassemic mice. Proc Natl Acad Sci USA 2009; 106 : 1205–10. [Google Scholar]
  13. HbVar. http://globin.cse.psu.edu/hbvar/menu.html. [Google Scholar]
  14. Hayakawa J, Ueda T, Lisowski, et al. Transient in vivo beta-globin production after lentiviral gene transfer to hematopoietic stem cells in the nonhuman primate. Hum Gene Ther 2009; 20 : 563–72. [Google Scholar]
  15. Huang SZ, Zeng FY, Ren ZR, et al. RNA transcripts of the beta-thalassaemia allele IVS-2-654 C->T: a small amount of normally processed beta-globin mRNA is still produced from the mutant gene. Br J Haematol 1994; 88 : 541–6. [Google Scholar]
  16. Lacerra G, Sierakowska H, Carestia C, et al. Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc Natl Acad Sci USA 2000; 97 : 9591–6. [Google Scholar]
  17. Gong L, Gu XF, Chen YD. Reversal of aberrant splicing of beta-thalassaemia allele (IVS-2-654 C-->T) by antisense RNA expression vector in cultured human erythroid cells. Br J Haematol 2000; 111 : 351–8. [Google Scholar]
  18. Suwanmanee T, Sierakowska H, Lacerra R, et al. Restoration of human beta-globin gene expression in murine and human IVS2-654 thalassemic erythroid cells by free uptake of antisense oligonucleotides. Mol Pharmacol 2002; 62 : 545–53. [Google Scholar]
  19. Vacek MM, Ma H, Gemignani F, et al. High-level expression of hemoglobin in a human thalassemic erythroid progenitor cells following lentiviral vector delivery of an antisense snRNA. Blood 2003; 101 : 104–11. [Google Scholar]
  20. Lewis J, Yang B, Kim R, et al. A common human beta globin splicing mutation modeled in mice. Blood 1998; 91 : 2152–6. [Google Scholar]
  21. Gorman L, Suter D, Emerick V, et al. Stable alteration of pre-mRNA splicing patterns by modified U7 small nuclear RNAs. Proc Natl Acad Sci USA 1998; 95 : 4929–34. [Google Scholar]
  22. Goyenvalle A, Vulin A, Fougerousse F, et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 2004; 306 : 1796–9. [Google Scholar]
  23. Benchaouir R, Meregalli M, Farini A, et al. Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell 2007; 1 : 646–57. [Google Scholar]
  24. Yokota T, Lu QL, Partridge, et al. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 2009; 65 : 667–76. [Google Scholar]
  25. Kaplan JC, Chelly J, Garcia L. Un saut symbolique mais encourageant dans le traitement de la myopathie de Duchenne. Med Sci (Paris) 2008; 24 : 215–7. [Google Scholar]
  26. Goyenvalle A, Vulin A, Fougerousse F, et al. Le saut d’exon thérapeutique : un espoir pour les dystrophinopathies. Med Sci (Paris) 2004; 20 : 1163–5. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.