Free Access
Med Sci (Paris)
Volume 25, Number 12, Décembre 2009
Anticorps monoclonaux en thérapeutique
Page(s) 1159 - 1162
Section III - Un futur en développement
Published online 15 December 2009
  1. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 2009; 157 : 220–33. [Google Scholar]
  2. Ward ES, Gussow D, Griffiths AD, et al. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 1989; 341 : 544–6. [Google Scholar]
  3. Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature 1993; 363 : 446–8. [Google Scholar]
  4. Greenberg AS, Avila D, Hughes M, et al. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 1995; 374 : 168–73. [Google Scholar]
  5. Riechmann L, Muyldermans S. Single domain antibodies: comparison of camel VH and camelised human VH domains. J Immunol Methods 1999; 231 : 25–38. [Google Scholar]
  6. Famm K, Hansen L, Christ D, Winter G. Thermodynamically stable aggregation-resistant antibody domains through directed evolution. J Mol Biol 2008; 376 : 926–31. [Google Scholar]
  7. Dumoulin M, Conrath K, Van Meirhaeghe A, et al. Single-domain antibody fragments with high conformational stability. Protein Sci 2002; 11 : 500–15. [Google Scholar]
  8. Tanaka T, Lobato MN, Rabbitts TH. Single domain intracellular antibodies: a minimal fragment for direct in vivo selection of antigen-specific intrabodies. J Mol Biol 2003; 331 : 1109–20. [Google Scholar]
  9. Su C, Nguyen VK, Nei M. Adaptive evolution of variable region genes encoding an unusual type of immunoglobulin in camelids. Mol Biol Evol 2002; 19 : 205–15. [Google Scholar]
  10. Vincke C, Loris R, Saerens D, et al. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 2009; 284 : 3273–84. [Google Scholar]
  11. Lauwereys M, Arbabi Ghahroudi M, Desmyter A, et al. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J 1998; 17 : 3512–20. [Google Scholar]
  12. Stijlemans B, Conrath K, Cortez-Retamozo V, et al. Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. African trypanosomes as paradigm. J Biol Chem 2004; 279 : 1256–61. [Google Scholar]
  13. Goldman ER, Anderson GP, Liu JL, et al. Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Anal Chem 2006; 78 : 8245–55. [Google Scholar]
  14. Roovers RC, Laeremans T, Huang L, et al. Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR Nanobodies. Cancer Immunol Immunother 2007; 56 : 303–17. [Google Scholar]
  15. Kubetzko S, Balic E, Waibel R, et al. PEGylation and multimerization of the anti-p185HER-2 single chain Fv fragment 4D5: effects on tumor targeting. J Biol Chem 2006; 281 : 35186–201. [Google Scholar]
  16. Tijink BM, Laeremans T, Budde M, et al. Improved tumor targeting of anti-epidermal growth factor receptor nanobodies through albumin binding: taking advantage of modular nanobody technology. Mol Cancer Ther 2008; 7 : 2288–97. [Google Scholar]
  17. Zhang J, Tanha J, Hirama T, et al. Pentamerization of single-domain antibodies from phage libraries: a novel strategy for the rapid generation of high-avidity antibody reagents. J Mol Biol 2004; 335 : 49–56. [Google Scholar]
  18. Stone E, Hirama T, Tanha J, et al. The assembly of single domain antibodies into bispecific decavalent molecules. J Immunol Methods 2007; 318 : 88–94. [Google Scholar]
  19. Behar G, Siberil S, Groulet A, et al. Isolation and characterization of anti-Fc gamma RIII (CD16) llama single-domain antibodies that activate natural killer cells. Protein Eng Des Sel 2008; 21 : 1–10. [Google Scholar]
  20. Cortez-Retamozo V, Backmann N, Senter PD, et al. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res 2004; 64 : 2853–7. [Google Scholar]
  21. Miller TW, Messer A. Intrabody applications in neurological disorders: progress and future prospects. Mol Ther 2005; 12 : 394–401. [Google Scholar]
  22. Wingren C, Borrebaeck CA. Progress in miniaturization of protein arrays: a step closer to high-density nanoarrays. Drug Discov Today 2007; 12 : 813–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.