Free Access
Med Sci (Paris)
Volume 25, Number 10, Octobre 2009
Page(s) 871 - 877
Section Recherche et Partenariat
Published online 15 October 2009
  1. Walters WP, Stahl MT, Murcko MA. A virtual screening: an overview. Drug Discov Today 1998; 3 : 160–78. [Google Scholar]
  2. Shoichet BK. Virtual screening of chemical librairies. Nature 2004; 432 : 862–5. [Google Scholar]
  3. Hristozov DP, Oprea TI, Gasteiger J. Virtual screening applications: a study of ligand based methods and different structure representations in four different scenarios. J Comput Aided Mol Des 2007; 21 : 617–40. [Google Scholar]
  4. Lipinsky CA. Lead to drug like compounds : the rule of five revolution drug like properties. Drug Discov Today 2004; 1 : 337–41. [Google Scholar]
  5. Opera T. Property distribution of drug-related chemical databases. J Comput Aid Mol Des 2000; 14 : 251–64. [Google Scholar]
  6. Richton G. Nonleadlikness and leadlikness in biochemical screening Drug Discov Today 2003; 8 : 86–96. [Google Scholar]
  7. Serdler J, Mc Govern S, Danan T, Shaichet B. Identification and prediction of promiscuous aggregating inhibitors among known drugs. J Med Chem 2003; 46 : 4447–86. [Google Scholar]
  8. Monge O. Création et utilisation de chimiothèques optimisées pour la recherche in silico de nouveaux composés bioactifs. Novembre 2006, réalisé à Orléans. [Google Scholar]
  9. Sperandio O, Miteva MA, Villoutreix BO. Combining ligand-and struture-based methods in drug design projects. Curr Comput Aid Drug Design 2008; 4 : 250–8. [Google Scholar]
  10. Oprea TI, Gottfries J. Chemography: the art of navigating in chemical space, J Comb Chem 2001; 3 :157–66. [Google Scholar]
  11. Oprea TI, Zamora I. Ungel AL. Pharmacokinetically based mapping device for chemical space navigation. J Comb Chem 2002; 4 : 258–66. [Google Scholar]
  12. Arrault A, Hamon V, Vayer P, Bertrand M. “Grider”, a visual data mining tool for inspection of chemical spaces. Extension to diversity exploration. Poster Ecole d’été d’Obernai juin 2008. « A visual data mining tool for inspection of chemical spaces. Extension to diversity exploration soumis à J Chem Inf Model [Google Scholar]
  13. Rosen J, Gottfries J, Muresan S, et al. Novel chemical space exploration via natural products. J Med Chem 2009; 52 : 1953–62. [Google Scholar]
  14. Latino DA., Aires-de-Sousa J. Genomic-scale classification of metabolic reactions: a chemoinformatics approach Angew. Chem Int 2006; 45, 13 : 2066–9. [Google Scholar]
  15. Faulon JL, Misra M, Martin S, et al. Genome-scale enzyme-metabolite and drug-target interaction predictions using the signature molecular descriptors. Bioinformatics 2008; 24 : 225–233. [Google Scholar]
  16. Ridder L, Wagener M. SyGma: combining expert knowledge and empirical scoring in the prediction of metabolites. Chem Med Chem 2008; 3 : 821–32. [Google Scholar]
  17. Scheiber J, Jenkins JL, Sukuru SC, et al. Mapping adverse reactions in chemical space. J Med Chem 2009; 52 : 3103–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.