Free Access
Med Sci (Paris)
Volume 25, Number 10, Octobre 2009
Page(s) 835 - 842
Section M/S revues
Published online 15 October 2009
  1. Lescuyer P, Chevallet M, Rabilloud T. L’analyse protéomique : concepts, réalités et perspectives en thérapeutique. Med Sci (Paris) 2004; 20 : 587–92. [Google Scholar]
  2. Solassol J, Boulle N, Maudelonde T, Mange A. Protéomique clinique : vers la détection précoce des cancers ? Med Sci (Paris) 2005; 21 : 722–8. [Google Scholar]
  3. Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 2005; 1 : 252–62. [Google Scholar]
  4. Bantscheff M, Schirle M, Sweetman G, et al. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 2007; 389 : 1017–31. [Google Scholar]
  5. Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004; 4 : 3665–85. [Google Scholar]
  6. Wang M, You J, Bemis KG, et al. Label-free mass spectrometry-based protein quantification technologies in proteomic analysis. Brief Funct Genomic Proteomic 2008; 7 : 329–39. [Google Scholar]
  7. Liu H, Sadygov RG, Yates JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 2004; 76 : 4193–201. [Google Scholar]
  8. Alban A, David SO, Bjorkesten L, et al. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 2003; 3 : 36–44. [Google Scholar]
  9. Lanquar V, Kuhn L, Lelievre F, et al. 15N-metabolic labeling for comparative plasma membrane proteomics in Arabidopsis cells. Proteomics 2007; 7 : 750–4. [Google Scholar]
  10. Oda Y, Huang K, Cross FR, et al. Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci USA 1999; 96 : 6591–6. [Google Scholar]
  11. Chen X, Smith LM, Bradbury EM. Site-specific mass tagging with stable isotopes in proteins for accurate and efficient protein identification. Anal Chem 2000; 72 : 1134–43. [Google Scholar]
  12. Ong SE, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002; 1 : 376–86. [Google Scholar]
  13. Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999; 17 : 994–9. [Google Scholar]
  14. Ramus C, Gonzalez de Peredo A, Dahout C, et al. An optimized strategy for ICAT quantification of membrane proteins. Mol Cell Proteomics 2006; 5 : 68–78. [Google Scholar]
  15. Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004; 3 : 1154–69. [Google Scholar]
  16. Yao X, Freas A, Ramirez J, et al. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 2001; 73 : 2836–42. [Google Scholar]
  17. Munchbach M, Quadroni M, Miotto G, James P. Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety. Anal Chem 2000; 72 : 4047–57. [Google Scholar]
  18. Goodlett DR, Keller A, Watts JD, et al. Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun Mass Spectrom 2001; 15 : 1214–21. [Google Scholar]
  19. Kruger M, Moser M, Ussar S, et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 2008; 134 : 353–64. [Google Scholar]
  20. Jiang H, English AM. Quantitative analysis of the yeast proteome by incorporation of isotopically labeled leucine. J Proteome Res 2002; 1 : 345–50. [Google Scholar]
  21. Spellman DS, Deinhardt K, Darie CC, et al. Stable isotopic labeling by amino acids in cultured primary neurons: application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. Mol Cell Proteomics 2008; 7 : 1067–76. [Google Scholar]
  22. Liao L, Park SK, Xu T, et al. Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice. Proc Natl Acad Sci USA 2008; 105 : 15281–6. [Google Scholar]
  23. Bouyssie D, Gonzalez de Peredo A, Mouton E, et al. Mascot file parsing and quantification (MFPaQ), a new software to parse, validate, and quantify proteomics data generated by ICAT and SILAC mass spectrometric analyses: application to the proteomics study of membrane proteins from primary human endothelial cells. Mol Cell Proteomics 2007; 6 : 1621–37. [Google Scholar]
  24. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 2008; 26 : 1367–72. [Google Scholar]
  25. Ong SE, Kratchmarova I, Mann M. Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2003; 2 : 173–81. [Google Scholar]
  26. Blagoev B, Ong SE, Kratchmarova I, Mann M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 2004; 22 : 1139–45. [Google Scholar]
  27. Olsen JV, Blagoev B, Gnad F, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 2006; 127 : 635–48. [Google Scholar]
  28. Gruhler A, Olsen JV, Mohammed S, et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 2005; 4 : 310–27. [Google Scholar]
  29. De Godoy LM, Olsen JV, Cox J, et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 2008; 455 : 1251–4. [Google Scholar]
  30. De Hoog CL, Foster LJ, Mann M. RNA and RNA binding proteins participate in early stages of cell spreading through spreading initiation centers. Cell 2004; 117 : 649–62. [Google Scholar]
  31. Blagoev B, Kratchmarova I, Ong SE, et al. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol 2003; 21 : 315–8. [Google Scholar]
  32. Vermeulen M, Mulder KW, Denissov S, et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 2007; 131 : 58–69. [Google Scholar]
  33. Wang X, Huang L. Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Mol Cell Proteomics 2008; 7 : 46–57. [Google Scholar]
  34. Mittler G, Butter F, Mann M. A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. Genome Res 2009; 19 : 284–93. [Google Scholar]
  35. Andersen JS, Lam YW, Leung AK, et al. Nucleolar proteome dynamics. Nature 2005; 433 : 77–83. [Google Scholar]
  36. Milner E, Barnea E, Beer I, Admon A. The turnover kinetics of major histocompatibility complex peptides of human cancer cells. Mol Cell Proteomics 2006; 5 : 357–65. [Google Scholar]
  37. Gronborg M, Kristiansen TZ, Iwahori A, et al. Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol Cell Proteomics 2006; 5 : 157–71. [Google Scholar]
  38. Liang X, Zhao J, Hajivandi M, et al. Quantification of membrane and membrane-bound proteins in normal and malignant breast cancer cells isolated from the same patient with primary breast carcinoma. J Proteome Res 2006; 5 : 2632–41. [Google Scholar]
  39. Bose R, Molina H, Patterson AS, et al. Phosphoproteomic analysis of Her2/neu signaling and inhibition. Proc Natl Acad Sci USA 2006; 103 : 9773–8. [Google Scholar]
  40. Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 2006; 24 : 971–83. [Google Scholar]
  41. Ibarrola N, Kalume DE, Gronborg M, et al. A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal Chem 2003; 75 : 6043–9. [Google Scholar]
  42. Scott L, Lamb J, Smith S, Wheatley DN. Single amino acid (arginine) deprivation: rapid and selective death of cultured transformed and malignant cells. Br J Cancer 2000; 83 : 800–10. [Google Scholar]
  43. Wheatley DN, Scott L, Lamb J, Smith S. Single amino acid (arginine) restriction: growth and death of cultured HeLa and human diploid fibroblasts. Cell Physiol Biochem 2000; 10 : 37–55. [Google Scholar]
  44. Hwang SI, Lundgren DH, Mayya V, et al. Systematic characterization of nuclear proteome during apoptosis: a quantitative proteomic study by differential extraction and stable isotope labeling. Mol Cell Proteomics 2006; 5 : 1131–45. [Google Scholar]
  45. Ong SE, Mann M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 2006; 1 : 2650–60. [Google Scholar]
  46. Schmidt F, Strozynski M, Salus SS, et al. Rapid determination of amino acid incorporation by stable isotope labeling with amino acids in cell culture (SILAC). Rapid Commun Mass Spectrom 2007; 21 : 3919–26. [Google Scholar]
  47. Van Hoof D, Pinkse MW, Oostwaard DW, et al. An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics. Nat Methods 2007; 4 : 677–8. [Google Scholar]
  48. Bendall SC, Hughes C, Stewart MH, et al. Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 2008; 7 : 1587–97. [Google Scholar]
  49. Amanchy R, Kalume DE, Iwahori A, et al. Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC). J Proteome Res 2005; 4 : 1661–71. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.