Free Access
Issue
Med Sci (Paris)
Volume 25, Number 10, Octobre 2009
Page(s) 798 - 801
Section Nouvelles
DOI https://doi.org/10.1051/medsci/20092510798
Published online 15 October 2009
  1. Daley GQ, Lensch MW, Jaenisch R, et al. Broader implications of defining standards for the pluripotency of iPSCs. Cell Stem Cell 2009; 4 : 200–1. [Google Scholar]
  2. Bonnevie L, Bel A, Sabbah L, et al. Is xenotransplantation of embryonic stem cells a realistic option ? Transplantation 2007; 83 : 333–5. [Google Scholar]
  3. Lensch MW, Schlaeger TM, Zon LI, Daley GQ. Teratoma formation assays with human embryonic stem cells: a rationale for one type of human-animal chimera. Cell Stem Cell 2007; 1 : 253–8. [Google Scholar]
  4. Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 1984; 309 : 255–6. [Google Scholar]
  5. Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 1987; 51 : 503–12. [Google Scholar]
  6. Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 2005; 19 : 1129–55. [Google Scholar]
  7. Nagy A, Gocza E, Diaz EM, et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 1990; 110 : 815–21. [Google Scholar]
  8. Wanga Z, Jaenisch R. At most three ES cells contribute to the somatic lineages of chimeric mice and of mice produced by ES-tetraploid complementation. Dev Biol 2004; 275 : 192–201. [Google Scholar]
  9. Eggan K, Rode A, Jentsch I, et al. Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nat Biotech 2002; 20 : 455–9. [Google Scholar]
  10. Tesar PJ, Chenoweth JG, Brook FA, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007; 448 : 196–9. [Google Scholar]
  11. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126 : 663–76. [Google Scholar]
  12. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448 : 318–24. [Google Scholar]
  13. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448 : 313–7. [Google Scholar]
  14. Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency. Development 2009; 136 : 509–23. [Google Scholar]
  15. Kang L, Wang J, Zhang Y, et al. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 2009; 5 :135–8. [Google Scholar]
  16. Zhao XY, Li W, Lv Z, et al. iPS cells produce viable mice through tetraploid complementation. Nature 2009; 461 : 86–90. [Google Scholar]
  17. Boland MJ, Hazen JL, Nazor KL, et al. Adult mice generated from induced pluripotent stem cells. Nature 2009; 461 : 91–94. [Google Scholar]
  18. Monya Baker. Stem cells: Fast and furious. Nature 2008; 458 : 962–5. [Google Scholar]
  19. Silva J, Barrandon O, Nichols J, et al. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 2008; 6 : e253. [Google Scholar]
  20. Ying QL, Wray J, Nichols J, et al. The ground state of embryonic stem cell self-renewal. Nature 2008; 453 : 519–23. [Google Scholar]
  21. Collombat P, Mansouri A. Conversion de cellules a pancréatiques en cellules β. Med Sci (Paris) 2009; 25 : 763–6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.