Accès gratuit
Numéro
Med Sci (Paris)
Volume 25, Numéro 10, Octobre 2009
Page(s) 798 - 801
Section Nouvelles
DOI https://doi.org/10.1051/medsci/20092510798
Publié en ligne 15 octobre 2009
  1. Daley GQ, Lensch MW, Jaenisch R, et al. Broader implications of defining standards for the pluripotency of iPSCs. Cell Stem Cell 2009; 4 : 200–1. [Google Scholar]
  2. Bonnevie L, Bel A, Sabbah L, et al. Is xenotransplantation of embryonic stem cells a realistic option ? Transplantation 2007; 83 : 333–5. [Google Scholar]
  3. Lensch MW, Schlaeger TM, Zon LI, Daley GQ. Teratoma formation assays with human embryonic stem cells: a rationale for one type of human-animal chimera. Cell Stem Cell 2007; 1 : 253–8. [Google Scholar]
  4. Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 1984; 309 : 255–6. [Google Scholar]
  5. Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 1987; 51 : 503–12. [Google Scholar]
  6. Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 2005; 19 : 1129–55. [Google Scholar]
  7. Nagy A, Gocza E, Diaz EM, et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 1990; 110 : 815–21. [Google Scholar]
  8. Wanga Z, Jaenisch R. At most three ES cells contribute to the somatic lineages of chimeric mice and of mice produced by ES-tetraploid complementation. Dev Biol 2004; 275 : 192–201. [Google Scholar]
  9. Eggan K, Rode A, Jentsch I, et al. Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nat Biotech 2002; 20 : 455–9. [Google Scholar]
  10. Tesar PJ, Chenoweth JG, Brook FA, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007; 448 : 196–9. [Google Scholar]
  11. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126 : 663–76. [Google Scholar]
  12. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448 : 318–24. [Google Scholar]
  13. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448 : 313–7. [Google Scholar]
  14. Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency. Development 2009; 136 : 509–23. [Google Scholar]
  15. Kang L, Wang J, Zhang Y, et al. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 2009; 5 :135–8. [Google Scholar]
  16. Zhao XY, Li W, Lv Z, et al. iPS cells produce viable mice through tetraploid complementation. Nature 2009; 461 : 86–90. [Google Scholar]
  17. Boland MJ, Hazen JL, Nazor KL, et al. Adult mice generated from induced pluripotent stem cells. Nature 2009; 461 : 91–94. [Google Scholar]
  18. Monya Baker. Stem cells: Fast and furious. Nature 2008; 458 : 962–5. [Google Scholar]
  19. Silva J, Barrandon O, Nichols J, et al. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 2008; 6 : e253. [Google Scholar]
  20. Ying QL, Wray J, Nichols J, et al. The ground state of embryonic stem cell self-renewal. Nature 2008; 453 : 519–23. [Google Scholar]
  21. Collombat P, Mansouri A. Conversion de cellules a pancréatiques en cellules β. Med Sci (Paris) 2009; 25 : 763–6. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.