Free Access
Med Sci (Paris)
Volume 25, Number 8-9, Août-Septembre 2009
Page(s) 669 - 672
Section Nouvelles
Published online 15 August 2009
  1. Bochud PY, Bochud M, Telenti A, Calandra T. Innate immunogenetics : a tool for exploring new frontiers of host defence. Lancet Infect Dis 2007; 7 : 531–42. [Google Scholar]
  2. Bellocchio S, Moretti S, Perruccio K, et al. TLRs govern neutrophil activity in aspergillosis. J Immunol 2004; 173 : 7406–15. [Google Scholar]
  3. Braedel S, Radsak M, Einsele H, et al. Aspergillus fumigatus antigens activate innate immune cells via toll-like receptors 2 and 4. Br J Haematol 2004;125 : 392–9. [Google Scholar]
  4. Meier A, Kirschning CJ, Nikolaus T, et al. Toll-like receptor (TLR) 2 and TLR4 are essential for Aspergillus-induced activation of murine macrophages. Cell Microbiol 2003; 5 : 561–70. [Google Scholar]
  5. Steele C, Rapaka RR, Metz A, et al. The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog 2005; 1 : e42. [Google Scholar]
  6. Dubourdeau M, Athman R, Balloy V, et al. Aspergillus fumigatus induces innate immune responses in alveolar macrophages through the MAPK pathway independently of TLR2 and TLR4. J Immunol 2006;177 : 3994–4001. [Google Scholar]
  7. Dumestre-Perard C, Lamy B, Aldebert D, et al. Aspergillus conidia activate the complement by the mannan-binding lectin C2 bypass mechanism.J Immunol 2008; 181 : 7100–5. [Google Scholar]
  8. Garlanda C, Hirsch E, Bozza S, et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 2002; 420 : 182–6. [Google Scholar]
  9. Madan T, Eggleton P, Kishore U, et al. Binding of pulmonary surfactant proteins A and D to Aspergillus fumigatus conidia enhances phagocytosis and killing by human neutrophils and alveolar macrophages. Infect Immun 1997; 65 : 3171–9. [Google Scholar]
  10. Netea MG, Warris A, van der Meer JW, et al. Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J Infect Dis 2003;188 : 320–6. [Google Scholar]
  11. Balloy V, Huerre M, Latge JP, Chignard M. Differences in patterns of infection and inflammation for corticosteroid treatment and chemotherapy in experimental invasive pulmonary aspergillosis. Infect Immun 2005; 73 : 494–503. [Google Scholar]
  12. Quintana-Murci L, Alcais A, Abel L, Casanova JL. Immunology in natura : clinical, epidemiological and evolutionary genetics of infectious diseases. Nat Immunol 2007; 8 : 1165–71. [Google Scholar]
  13. Misch EA, Hawn TR. Toll-like receptor polymorphisms and susceptibility to human disease. Clin Sci (Lond) 2008;114 : 347–60. [Google Scholar]
  14. Ferwerda B, McCall MB, Verheijen K, et al. Functional consequences of toll-like receptor 4 polymorphisms. Mol Med 2008; 14 : 346–52. [Google Scholar]
  15. Carvalho A, Pasqualotto AC, Pitzurra L, et al. Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis. J Infect Dis 2008; 197 : 618–21. [Google Scholar]
  16. Bochud PY, Chien JW, Marr KA, et al. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med 2008; 359 : 1766–77. [Google Scholar]
  17. Kesh S, Mensah NY, Peterlongo P, et al. TLR1 and TLR6 polymorphisms are associated with susceptibility to invasive aspergillosis after allogeneic stem cell transplantation. Ann NY Acad Sci 2005; 1062 : 95–103. [Google Scholar]
  18. Sainz J, Hassan L, Perez E, et al. Interleukin-10 promoter polymorphism as risk factor to develop invasive pulmonary aspergillosis. Immunol Lett 2007; 109 : 76–82. [Google Scholar]
  19. Sainz J, Perez E, Hassan L, et al. Variable number of tandem repeats of TNF receptor type 2 promoter as genetic biomarker of susceptibility to develop invasive pulmonary aspergillosis. Hum Immunol 2007; 68 : 41–50. [Google Scholar]
  20. Seo KW, Kim DH, Sohn SK, et al. Protective role of interleukin-10 promoter gene polymorphism in the pathogenesis of invasive pulmonary aspergillosis after allogeneic stem cell transplantation. Bone Marrow Transplant 2005; 36 : 1089–5. [Google Scholar]
  21. Crosdale DJ, Poulton KV, Ollier WE, et al. Mannose-binding lectin gene polymorphisms as a susceptibility factor for chronic necrotizing pulmonary aspergillosis. J Infect Dis 2001; 184 : 653–6. [Google Scholar]
  22. Vaid M, Kaur S, Sambatakou H, et al. Distinct alleles of mannose-binding lectin (MBL) and surfactant proteins A (SP-A) in patients with chronic cavitary pulmonary aspergillosis and allergic bronchopulmonary aspergillosis. Clin Chem Lab Med 2007; 45 : 183–6. [Google Scholar]
  23. Delneste Y, Beauvillain C, Jeannin P. Immunité naturelle : structure et fonction des Toll-like receptors. Med Sci (Paris) 2007; 23 : 67–73. [Google Scholar]
  24. Dostert C, Pétrilli V. Amiante et inflammation, rôle de l’inflammasome. Med Sci (Paris) 2008; 24 : 916–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.