Free Access
Med Sci (Paris)
Volume 25, Number 6-7, Juin-Juillet 2009
Page(s) 627 - 632
Section Dossier technique
Published online 15 June 2009
  1. Mayr LM, Fuerst P. The future of high-throughput screening. J Biomol Screen 2008; 13 : 443–8. [Google Scholar]
  2. Squires TM, Quake SR. Microfluidics: fluid physics at the nanoliter scale. Rev Modern Physics 2005; 77 : 977–1026. [Google Scholar]
  3. Tawfik DS, Griffiths AD. Man-made cell-like compartments for molecular evolution. Nat Biotechnol 1998; 16 : 652–6. [Google Scholar]
  4. Xia YN, Whitesides GM. Soft lithography. Annu Rev Mater Sci 1998; 28 : 153–84. [Google Scholar]
  5. Fu AY, Spence C, Scherer A, et al. A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 1999; 17 : 1109–11. [Google Scholar]
  6. Fouillet Y, Achard JL. Microfluidique discrète et biotechnologie. Comptes rendus physique 2004; 5 : 577–88. [Google Scholar]
  7. Anna SL, Bontoux N, Stone HA. Formation of dispersions using « flow focusing » in microchannels. Appl Phys Lett 2003; 82 : 364–6. [Google Scholar]
  8. Clausell-Tormos J, Lieber D, Baret JC, et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 2008; 15 : 427–37. [Google Scholar]
  9. Courtois F, Olguin LF, Whyte G, et al. An integrated device for monitoring time-dependent in vitro expression from single genes in picolitre droplets. Chembiochem 2008; 9 : 439–46. [Google Scholar]
  10. Song H, Tice JD Ismagilov RF. A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 2003; 42 : 768–72. [Google Scholar]
  11. Ahn K, Agresti J, Chong H, et al. Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl Phys Lett 2006; 88 : 29 juin online. [Google Scholar]
  12. Zheng B, Tice JD, Ismagilov RF. Formation of droplets of in microfluidic channels alternating composition and applications to indexing of concentrations in droplet-based assays. Anal Chem 2004; 76 : 4977–82. [Google Scholar]
  13. Priest C, Herminghaus S, Seemann R. Controlled electrocoalescence in microfluidics: Targeting a single lamella. Appl Phys Lett 2006; 89 : 134101. [Google Scholar]
  14. Link DR, Grasland-Mongrain E, Duri A, et al. Electric control of droplets in microfluidic devices. Angew Chem Int Ed 2006; 45 : 2556–60. [Google Scholar]
  15. Taly V, Kelly BT, Griffiths AD. Droplets as microreactors for high-throughput biology. Chembiochem 2007; 8 : 263–72. [Google Scholar]
  16. Kelly BT, Baret JC, Taly V, Griffiths AD. Miniaturizing chemistry and biology in microdroplets. Chem Commun, 2007; 18 : 1773–88. [Google Scholar]
  17. Dressman D, Yan H, Traverso G, et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA 2003; 100 : 8817–22. [Google Scholar]
  18. Wetmur JG, Kumar M, Zhang L, et al. Molecular haplotyping by linking emulsion PCR: analysis of paraoxonase 1 haplotypes and phenotypes. Nucleic Acids Res 2005; 33 : 2615–9. [Google Scholar]
  19. Kojima T, Takei Y, Ohtsuka M, et al. PCR amplification from single DNA molecules on magnetic beads in emulsion: application for high-throughput screening of transcription factor targets. Nucleic Acids Res 2005; 33 : e150. [Google Scholar]
  20. Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 2008; 9 : 387–402. [Google Scholar]
  21. Beer NR, Wheeler EK, Lee-Houghton L, et al. On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets. Anal Chem 2008; 80 : 1854–8. [Google Scholar]
  22. Kumaresan P, Yang CJ, Cronier SA, et al. High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Anal Chem 2008; 80 : 3522–9. [Google Scholar]
  23. Kiss M, Ortoleva-Donnelly L, Beer N, et al. High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal Chem 2009 (sous presse). [Google Scholar]
  24. Song H, Ismagilov RF. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 2003; 125 : 14613–9. [Google Scholar]
  25. Frenz L, Blank K, Brouze E, Griffiths AD. Reliable microfluidic on-chip incubation of droplets in delay-lines. Lab Chip 2009 online (sous presse). [Google Scholar]
  26. Song H, Chen DL, Ismagilov RF. Reactions in droplets in microfluidic channels. Angew Chem Int Ed, 2006; 45 : 7336–56. [Google Scholar]
  27. Roach LS, Song H, Ismagilov RF. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Anal Chem 2005; 77 : 785–96. [Google Scholar]
  28. Liau A, Karnik R, Majumdar A, Doudna Cate JH. Mixing crowded biological solutions in milliseconds. Anal Chem 2005; 77 : 7618–25. [Google Scholar]
  29. Srisa-Art M, Dyson EC, deMello AJ, Edel JB. Monitoring of real-time streptavidin-biotin binding kinetics using droplet microfluidics. Anal Chem 2008; 80 : 7063–7. [Google Scholar]
  30. Zheng B, Ismagilov RF. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angew Chem Int Ed 2005; 44 : 2520–3. [Google Scholar]
  31. Song H, Li HW, Munson MS, Thuong T, et al. On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system. Anal Chem 2006; 78 : 4839–49. [Google Scholar]
  32. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci USA 1999; 96 : 9236–41. [Google Scholar]
  33. Dennis Lo YM, Chiu RWK. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidies by maternal plasma nucleic acid analysis. Clin Chem 2008; 54 : 461–6. [Google Scholar]
  34. Ottesen EA, Hong JW, Quake SR, Leadbetter JR. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 2006; 314 : 1464–7. [Google Scholar]
  35. Fan HC, Quake SR. Detection of aneuploidy with digital polymerase chain reaction. Anal Chem 2007; 79 : 7576–9. [Google Scholar]
  36. Lun FMF, Chiu RWK, Allen Chan KC, et al. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem 2008; 54 : 1664–72. [Google Scholar]
  37. Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008; 14 : 985–90. [Google Scholar]
  38. Martin K, Henkel T, Baier V, et al. Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices. Lab Chip 2003; 3 : 202–7. [Google Scholar]
  39. Grodrian A, Metze J, Henkel T, et al. Segmented flow generation by chip reactors for highly parallelized cell cultivation. Biosens Bioelectron 2004; 19 : 1421–8. [Google Scholar]
  40. Oh HJ, Kim SH, Baek JY, et al. Hydrodynamic micro-encapsulation of aqueous fluids and cells via on the fly photopolymerization. J Micromechanic Microengineer 2006; 16 : 285–91. [Google Scholar]
  41. Chapman T. Drug discovery: the leading edge. Nature 2004; 430 : 109–15. [Google Scholar]
  42. Johnston PA, Johnston PA. Cellular platforms for hts: three case studies. Drug Discov Today 2002; 7 : 353–63. [Google Scholar]
  43. Mastrobattista E, Taly V, Chanudet E, et al. High-throughput screening of enzyme libraries: in vitro evolution of a beta-galactosidase by fluorescence-activated sorting of double emulsions. Chem Biol 2005; 12 : 1291–300. [Google Scholar]
  44. Thorsen T, Roberts W, Arnold FH, et al. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 2001; 86 : 4163–6. [Google Scholar]
  45. Chabert M, Dorfman KD, Viovy JL. Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Electrophoresis 2005; 26 : 3706–15. [Google Scholar]
  46. Link DR, Anna SL, Weitz DA, et al. Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 2004; 92 : 6 février online. [Google Scholar]
  47. Fidalgo LM, Whyte G, Bratton D, et al. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices. Angewandte Chemie-International Edition 2008; 47 : 2042–5. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.