Accès gratuit
Med Sci (Paris)
Volume 25, Numéro 6-7, Juin-Juillet 2009
Page(s) 627 - 632
Section Dossier technique
Publié en ligne 15 juin 2009
  1. Mayr LM, Fuerst P. The future of high-throughput screening. J Biomol Screen 2008; 13 : 443–8. [Google Scholar]
  2. Squires TM, Quake SR. Microfluidics: fluid physics at the nanoliter scale. Rev Modern Physics 2005; 77 : 977–1026. [Google Scholar]
  3. Tawfik DS, Griffiths AD. Man-made cell-like compartments for molecular evolution. Nat Biotechnol 1998; 16 : 652–6. [Google Scholar]
  4. Xia YN, Whitesides GM. Soft lithography. Annu Rev Mater Sci 1998; 28 : 153–84. [Google Scholar]
  5. Fu AY, Spence C, Scherer A, et al. A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 1999; 17 : 1109–11. [Google Scholar]
  6. Fouillet Y, Achard JL. Microfluidique discrète et biotechnologie. Comptes rendus physique 2004; 5 : 577–88. [Google Scholar]
  7. Anna SL, Bontoux N, Stone HA. Formation of dispersions using « flow focusing » in microchannels. Appl Phys Lett 2003; 82 : 364–6. [Google Scholar]
  8. Clausell-Tormos J, Lieber D, Baret JC, et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 2008; 15 : 427–37. [Google Scholar]
  9. Courtois F, Olguin LF, Whyte G, et al. An integrated device for monitoring time-dependent in vitro expression from single genes in picolitre droplets. Chembiochem 2008; 9 : 439–46. [Google Scholar]
  10. Song H, Tice JD Ismagilov RF. A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 2003; 42 : 768–72. [Google Scholar]
  11. Ahn K, Agresti J, Chong H, et al. Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl Phys Lett 2006; 88 : 29 juin online. [Google Scholar]
  12. Zheng B, Tice JD, Ismagilov RF. Formation of droplets of in microfluidic channels alternating composition and applications to indexing of concentrations in droplet-based assays. Anal Chem 2004; 76 : 4977–82. [Google Scholar]
  13. Priest C, Herminghaus S, Seemann R. Controlled electrocoalescence in microfluidics: Targeting a single lamella. Appl Phys Lett 2006; 89 : 134101. [Google Scholar]
  14. Link DR, Grasland-Mongrain E, Duri A, et al. Electric control of droplets in microfluidic devices. Angew Chem Int Ed 2006; 45 : 2556–60. [Google Scholar]
  15. Taly V, Kelly BT, Griffiths AD. Droplets as microreactors for high-throughput biology. Chembiochem 2007; 8 : 263–72. [Google Scholar]
  16. Kelly BT, Baret JC, Taly V, Griffiths AD. Miniaturizing chemistry and biology in microdroplets. Chem Commun, 2007; 18 : 1773–88. [Google Scholar]
  17. Dressman D, Yan H, Traverso G, et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA 2003; 100 : 8817–22. [Google Scholar]
  18. Wetmur JG, Kumar M, Zhang L, et al. Molecular haplotyping by linking emulsion PCR: analysis of paraoxonase 1 haplotypes and phenotypes. Nucleic Acids Res 2005; 33 : 2615–9. [Google Scholar]
  19. Kojima T, Takei Y, Ohtsuka M, et al. PCR amplification from single DNA molecules on magnetic beads in emulsion: application for high-throughput screening of transcription factor targets. Nucleic Acids Res 2005; 33 : e150. [Google Scholar]
  20. Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 2008; 9 : 387–402. [Google Scholar]
  21. Beer NR, Wheeler EK, Lee-Houghton L, et al. On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets. Anal Chem 2008; 80 : 1854–8. [Google Scholar]
  22. Kumaresan P, Yang CJ, Cronier SA, et al. High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Anal Chem 2008; 80 : 3522–9. [Google Scholar]
  23. Kiss M, Ortoleva-Donnelly L, Beer N, et al. High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal Chem 2009 (sous presse). [Google Scholar]
  24. Song H, Ismagilov RF. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 2003; 125 : 14613–9. [Google Scholar]
  25. Frenz L, Blank K, Brouze E, Griffiths AD. Reliable microfluidic on-chip incubation of droplets in delay-lines. Lab Chip 2009 online (sous presse). [Google Scholar]
  26. Song H, Chen DL, Ismagilov RF. Reactions in droplets in microfluidic channels. Angew Chem Int Ed, 2006; 45 : 7336–56. [Google Scholar]
  27. Roach LS, Song H, Ismagilov RF. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Anal Chem 2005; 77 : 785–96. [Google Scholar]
  28. Liau A, Karnik R, Majumdar A, Doudna Cate JH. Mixing crowded biological solutions in milliseconds. Anal Chem 2005; 77 : 7618–25. [Google Scholar]
  29. Srisa-Art M, Dyson EC, deMello AJ, Edel JB. Monitoring of real-time streptavidin-biotin binding kinetics using droplet microfluidics. Anal Chem 2008; 80 : 7063–7. [Google Scholar]
  30. Zheng B, Ismagilov RF. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angew Chem Int Ed 2005; 44 : 2520–3. [Google Scholar]
  31. Song H, Li HW, Munson MS, Thuong T, et al. On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system. Anal Chem 2006; 78 : 4839–49. [Google Scholar]
  32. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci USA 1999; 96 : 9236–41. [Google Scholar]
  33. Dennis Lo YM, Chiu RWK. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidies by maternal plasma nucleic acid analysis. Clin Chem 2008; 54 : 461–6. [Google Scholar]
  34. Ottesen EA, Hong JW, Quake SR, Leadbetter JR. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 2006; 314 : 1464–7. [Google Scholar]
  35. Fan HC, Quake SR. Detection of aneuploidy with digital polymerase chain reaction. Anal Chem 2007; 79 : 7576–9. [Google Scholar]
  36. Lun FMF, Chiu RWK, Allen Chan KC, et al. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem 2008; 54 : 1664–72. [Google Scholar]
  37. Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008; 14 : 985–90. [Google Scholar]
  38. Martin K, Henkel T, Baier V, et al. Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices. Lab Chip 2003; 3 : 202–7. [Google Scholar]
  39. Grodrian A, Metze J, Henkel T, et al. Segmented flow generation by chip reactors for highly parallelized cell cultivation. Biosens Bioelectron 2004; 19 : 1421–8. [Google Scholar]
  40. Oh HJ, Kim SH, Baek JY, et al. Hydrodynamic micro-encapsulation of aqueous fluids and cells via on the fly photopolymerization. J Micromechanic Microengineer 2006; 16 : 285–91. [Google Scholar]
  41. Chapman T. Drug discovery: the leading edge. Nature 2004; 430 : 109–15. [Google Scholar]
  42. Johnston PA, Johnston PA. Cellular platforms for hts: three case studies. Drug Discov Today 2002; 7 : 353–63. [Google Scholar]
  43. Mastrobattista E, Taly V, Chanudet E, et al. High-throughput screening of enzyme libraries: in vitro evolution of a beta-galactosidase by fluorescence-activated sorting of double emulsions. Chem Biol 2005; 12 : 1291–300. [Google Scholar]
  44. Thorsen T, Roberts W, Arnold FH, et al. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 2001; 86 : 4163–6. [Google Scholar]
  45. Chabert M, Dorfman KD, Viovy JL. Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Electrophoresis 2005; 26 : 3706–15. [Google Scholar]
  46. Link DR, Anna SL, Weitz DA, et al. Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 2004; 92 : 6 février online. [Google Scholar]
  47. Fidalgo LM, Whyte G, Bratton D, et al. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices. Angewandte Chemie-International Edition 2008; 47 : 2042–5. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.