Free Access
Issue
Med Sci (Paris)
Volume 25, Number 4, Avril 2009
Page(s) 391 - 397
Section M/S revues
DOI https://doi.org/10.1051/medsci/2009254391
Published online 15 April 2009
  1. Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA. Regulation of surfactant secretion in alveolar type II cells. Am J Physiol Lung Cell Mol Physiol 2007; 293 : L259–71. [Google Scholar]
  2. Chilvers MA, O’Callaghan C. Local mucociliary defence mechanisms. Paediatr Respir Rev 2000; 1 : 27–34. [Google Scholar]
  3. Sacco O, Silvestri M, Sabatini F, et al. Epithelial cells and fibroblasts: structural repair and remodelling in the airways. Paediatr Respir Rev 2004; 5 (suppl A) : S35–40. [Google Scholar]
  4. Tulik MK, Fiset PO, Muller O, Hamid Q. Cytokines and chemokines in asthma: an overview, chap. 39. In: Hamid Q, Shannon J, Martin J, eds. Physiologic basis of respiratory diseases. Hamilton, Canada : BC Becker, 2005 : 453–67. [Google Scholar]
  5. Boucher RC. Regulation of airway surface liquid volume by human airway epithelia. Pflug Arch 2003; 445 : 495–8. [Google Scholar]
  6. Berthiaume Y, Matthay MA. Alveolar edema fluid clearance and acute lung injury. Respir Physiol Neurobiol 2007; 159 : 350–9. [Google Scholar]
  7. Papazian DM, Schwarz TL, Tempel BL, et al. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 1987; 237 : 749–53. [Google Scholar]
  8. Mall M, Wissner A, Schreiber R, et al. Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl secretion in human airway epithelia. Am J Respir Cell Mol Biol 2000; 23 : 283–9. [Google Scholar]
  9. Demolombe S, Franco D, de Boer P, et al. Differential expression of KvLQT1 and its regulator IsK in mouse epithelia. Am J Physiol Cell Physiol 2001; 280 : C359–72. [Google Scholar]
  10. Cowley EA, Linsdell P. Characterization of basolateral K+ channels underlying anion secretion in the human airway cell line Calu-3. J Physiol 2002; 538 : 747–57. [Google Scholar]
  11. Trinh NT, Prive A, Maille E, et al. Control of normal and cystic fibrosis bronchial epithelia repair by EGF and K+ channels activities. Am J Physiol Lung Cell Mol Physiol 2008; 295 : L866–80. [Google Scholar]
  12. Bernard K, Bogliolo S, Soriani O, Ehrenfeld J. Modulation of calcium-dependent chloride secretion by basolateral SK4-like channels in a human bronchial cell line. J Membr Biol 2003; 196 : 15–31. [Google Scholar]
  13. Trinh NT, Prive A, Kheir L, et al. Involvement of KATP and KvLQT1 K+ channels in EGF-stimulated alveolar epithelial cell repair processes. Am J Physiol Lung Cell Mol Physiol 2007; 293 : L870–82. [Google Scholar]
  14. Leroy C, Prive A, Bourret JC, et al. Regulation of ENaC and CFTR expression with K+ channel modulators and effect on fluid absorption across alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 291 : L1207–19. [Google Scholar]
  15. Moser SL, Harron SA, Crack J, et al. Multiple KCNQ potassium channel subtypes mediate basal anion secretion from the human airway epithelial cell line Calu-3. J Membr Biol 2008; 221 : 153–63. [Google Scholar]
  16. O’Grady SM, Lee SY. Chloride and potassium channel function in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 284 : L689–700. [Google Scholar]
  17. Coetzee WA, Amarillo Y, Chiu J, et al. Molecular diversity of K+ channels. Ann NY Acad Sci 1999; 868 : 233–85. [Google Scholar]
  18. DeCoursey TE, Jacobs ER, Silver MR. Potassium currents in rat type II alveolar epithelial cells. J Physiol 1988; 395 : 487–505. [Google Scholar]
  19. Mall M, Gonska T, Thomas J, et al. Modulation of Ca2+-activated Cl secretion by basolateral K+ channels in human normal and cystic fibrosis airway epithelia. Pediatr Res 2003; 53 : 608–18. [Google Scholar]
  20. Thompson-Vest N, Shimizu Y, Hunne B, Furness JB. The distribution of intermediate-conductance, calcium-activated, potassium (IK) channels in epithelial cells. J Anat 2006; 208 : 219–29. [Google Scholar]
  21. Devor DC, Bridges RJ, Pilewski JM. Pharmacological modulation of ion transport across wild-type and DeltaF508 CFTR-expressing human bronchial epithelia. Am J Physiol Cell Physiol 2000; 279 : C461–79. [Google Scholar]
  22. Dulong S, Bernard K, Ehrenfeld J. Enhancement of P2Y6-induced Cl secretion by IL-13 and modulation of SK4 channels activity in human bronchial cells. Cell Physiol Biochem. 2007; 20 : 483–94. [Google Scholar]
  23. Leroy C, Dagenais A, Berthiaume Y, Brochiero E. Molecular identity and function in transepithelial transport of K(ATP) channels in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 286 : L1027–37. [Google Scholar]
  24. Ridge FP, Duszyk M, French AS. A large conductance, Ca2+-activated K+ channel in a human lung epithelial cell line (A549). Biochim Biophys Acta 1997; 1327 : 249–58. [Google Scholar]
  25. Kunzelmann K, Pavenstadt H, Beck C, et al. Characterization of potassium channels in respiratory cells. I. General properties. Pflug Arch 1989; 414 : 291–6. [Google Scholar]
  26. Monaghan AS, Baines DL, Kemp PJ, Olver RE. Inwardly rectifying K+ currents of alveolar type II cells isolated from fetal guinea-pig lung: regulation by G protein- and Mg2+-dependent pathways. Pflugers Arch. 1997; 433 : 294–303. [Google Scholar]
  27. Doring F, Derst C, Wischmeyer E, et al. The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties. J Neurosci 1998; 18 : 8625–36. [Google Scholar]
  28. Plummer HK III, Dhar MS, Cekanova M, Schuller HM. Expression of G-protein inwardly rectifying potassium channels (GIRKs) in lung cancer cell lines. BMC Cancer 2005; 5 : 104. [Google Scholar]
  29. Inglis SK, Brown SG, Constable MJ, et al. A Ba2+-resistant, acid-sensitive K+ conductance in Na+-absorbing H441 human airway epithelial cells. Am J Physiol Lung Cell Mol. Physiol 2007; 292 : L1304–12. [Google Scholar]
  30. Davis KA, Cowley EA. Two-pore-domain potassium channels support anion secretion from human airway Calu-3 epithelial cells. Pflug Arch 2006; 451 : 631–41. [Google Scholar]
  31. Kemp PJ, Lewis A, Hartness ME, et al. Airway chemotransduction: from oxygen sensor to cellular effector. Am J Respir Crit Care Med 2002; 166 : S17–24. [Google Scholar]
  32. O’Grady SM, Lee SY. Molecular diversity and function of voltage-gated (Kv) potassium channels in epithelial cells. Int J Biochem Cell Biol 2005; 37 : 1578–94. [Google Scholar]
  33. Lopez-Barneo J, del Toro R, Levitsky KL, Chiara MD, Ortega-Saenz P. Regulation of oxygen sensing by ion channels. J Appl Physiol 2004; 96 : 1187–95. [Google Scholar]
  34. Lewis A, Peers C, Ashford ML, Kemp PJ. Hypoxia inhibits human recombinant large conductance, Ca2+-activated K+ (maxi-K) channels by a mechanism which is membrane delimited and Ca2+ sensitive. J Physiol 2002; 540 : 771–80. [Google Scholar]
  35. Haller T, Auktor K, Frick M, et al. Threshold calcium levels for lamellar body exocytosis in type II pneumocytes. Am J Physiol 1999; 277 : L893–900. [Google Scholar]
  36. Wadsworth SJ, Chander A. H+-and K+-dependence of Ca2+ uptake in lung lamellar bodies. J Membr.Biol. 2000; 174 : 41–51. [Google Scholar]
  37. Coraux C, Hajj R, Lesimple P, Puchelle E. Repair and regeneration of the airway epithelium. Med Sci (Paris) 2005; 21 : 1063–9. [Google Scholar]
  38. Wang L, Xu B, White RE, Lu L. Growth factor-mediated K+ channel activity associated with human myeloblastic ML-1 cell proliferation. Am J Physiol 1997; 273 : C1657–65. [Google Scholar]
  39. Wang Z. Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflug Arch 2004; 448 : 274–86. [Google Scholar]
  40. Schwab A, Nechyporuk-Zloy V, Fabian A, Stock C. Cells move when ions and water flow. Pflug Arch 2007; 453 : 421–32. [Google Scholar]
  41. Jin X, Malykhina AP, Lupu F, Akbarali HI. Altered gene expression and increased bursting activity of colonic smooth muscle ATP-sensitive K+ channels in experimental colitis. Am J Physiol Gastrointest Liver Physiol 2004; 287 : G274–85. [Google Scholar]
  42. Lu G, Mazet B, Sun C, et al. Inflammatory modulation of calcium-activated potassium channels in canine colonic circular smooth muscle cells. Gastroenterology 1999; 116 : 884–92. [Google Scholar]
  43. El Ani D, Zimlichman R. TNF-alpha stimulated ATP-sensitive potassium channels and attenuated deoxyglucose and Ca uptake of H9c2 cardiomyocytes. Ann NY Acad Sci 2003; 1010 : 716–20. [Google Scholar]
  44. Maruyama N, Kakuta Y, Yamauchi K, et al. Quinine inhibits production of tumor necrosis factor-alpha from human alveolar macrophages. Am J Respir Cell Mol Biol 1994; 10 : 514–20. [Google Scholar]
  45. Pompermayer K, Amaral FA, Fagundes CT, et al. Effects of the treatment with glibenclamide, an ATP-sensitive potassium channel blocker, on intestinal ischemia and reperfusion injury. Eur J Pharmacol 2007; 556 : 215–22. [Google Scholar]
  46. Cruse G, Duffy SM, Brightling CE, Bradding P. Functional KCa3.1 K+ channels are required for human lung mast cell migration. Thorax 2006; 61 : 880–5. [Google Scholar]
  47. Olver RE, Walters DV, Wilson M. Developmental regulation of lung liquid transport. Annu. Rev Physiol 2004; 66 : 77–101. [Google Scholar]
  48. Boucher RC. New concepts of the pathogenesis of cystic fibrosis lung disease. Eur. Respir. J 2004; 23 : 146–58. [Google Scholar]
  49. Sakuma T, Takahashi K, Ohya N, Nakada T, Matthay MA. Effects of ATP-sensitive potassium channel opener on potassium transport and alveolar fluid clearance in the resected human lung. Pharmacol Toxicol 1998; 83 : 16–22. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.