Accès gratuit
Numéro |
Med Sci (Paris)
Volume 25, Numéro 4, Avril 2009
|
|
---|---|---|
Page(s) | 391 - 397 | |
Section | M/S revues | |
DOI | https://doi.org/10.1051/medsci/2009254391 | |
Publié en ligne | 15 avril 2009 |
- Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA. Regulation of surfactant secretion in alveolar type II cells. Am J Physiol Lung Cell Mol Physiol 2007; 293 : L259–71. [Google Scholar]
- Chilvers MA, O’Callaghan C. Local mucociliary defence mechanisms. Paediatr Respir Rev 2000; 1 : 27–34. [Google Scholar]
- Sacco O, Silvestri M, Sabatini F, et al. Epithelial cells and fibroblasts: structural repair and remodelling in the airways. Paediatr Respir Rev 2004; 5 (suppl A) : S35–40. [Google Scholar]
- Tulik MK, Fiset PO, Muller O, Hamid Q. Cytokines and chemokines in asthma: an overview, chap. 39. In: Hamid Q, Shannon J, Martin J, eds. Physiologic basis of respiratory diseases. Hamilton, Canada : BC Becker, 2005 : 453–67. [Google Scholar]
- Boucher RC. Regulation of airway surface liquid volume by human airway epithelia. Pflug Arch 2003; 445 : 495–8. [Google Scholar]
- Berthiaume Y, Matthay MA. Alveolar edema fluid clearance and acute lung injury. Respir Physiol Neurobiol 2007; 159 : 350–9. [Google Scholar]
- Papazian DM, Schwarz TL, Tempel BL, et al. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 1987; 237 : 749–53. [Google Scholar]
- Mall M, Wissner A, Schreiber R, et al. Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl− secretion in human airway epithelia. Am J Respir Cell Mol Biol 2000; 23 : 283–9. [Google Scholar]
- Demolombe S, Franco D, de Boer P, et al. Differential expression of KvLQT1 and its regulator IsK in mouse epithelia. Am J Physiol Cell Physiol 2001; 280 : C359–72. [Google Scholar]
- Cowley EA, Linsdell P. Characterization of basolateral K+ channels underlying anion secretion in the human airway cell line Calu-3. J Physiol 2002; 538 : 747–57. [Google Scholar]
- Trinh NT, Prive A, Maille E, et al. Control of normal and cystic fibrosis bronchial epithelia repair by EGF and K+ channels activities. Am J Physiol Lung Cell Mol Physiol 2008; 295 : L866–80. [Google Scholar]
- Bernard K, Bogliolo S, Soriani O, Ehrenfeld J. Modulation of calcium-dependent chloride secretion by basolateral SK4-like channels in a human bronchial cell line. J Membr Biol 2003; 196 : 15–31. [Google Scholar]
- Trinh NT, Prive A, Kheir L, et al. Involvement of KATP and KvLQT1 K+ channels in EGF-stimulated alveolar epithelial cell repair processes. Am J Physiol Lung Cell Mol Physiol 2007; 293 : L870–82. [Google Scholar]
- Leroy C, Prive A, Bourret JC, et al. Regulation of ENaC and CFTR expression with K+ channel modulators and effect on fluid absorption across alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 291 : L1207–19. [Google Scholar]
- Moser SL, Harron SA, Crack J, et al. Multiple KCNQ potassium channel subtypes mediate basal anion secretion from the human airway epithelial cell line Calu-3. J Membr Biol 2008; 221 : 153–63. [Google Scholar]
- O’Grady SM, Lee SY. Chloride and potassium channel function in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 284 : L689–700. [Google Scholar]
- Coetzee WA, Amarillo Y, Chiu J, et al. Molecular diversity of K+ channels. Ann NY Acad Sci 1999; 868 : 233–85. [Google Scholar]
- DeCoursey TE, Jacobs ER, Silver MR. Potassium currents in rat type II alveolar epithelial cells. J Physiol 1988; 395 : 487–505. [Google Scholar]
- Mall M, Gonska T, Thomas J, et al. Modulation of Ca2+-activated Cl− secretion by basolateral K+ channels in human normal and cystic fibrosis airway epithelia. Pediatr Res 2003; 53 : 608–18. [Google Scholar]
- Thompson-Vest N, Shimizu Y, Hunne B, Furness JB. The distribution of intermediate-conductance, calcium-activated, potassium (IK) channels in epithelial cells. J Anat 2006; 208 : 219–29. [Google Scholar]
- Devor DC, Bridges RJ, Pilewski JM. Pharmacological modulation of ion transport across wild-type and DeltaF508 CFTR-expressing human bronchial epithelia. Am J Physiol Cell Physiol 2000; 279 : C461–79. [Google Scholar]
- Dulong S, Bernard K, Ehrenfeld J. Enhancement of P2Y6-induced Cl− secretion by IL-13 and modulation of SK4 channels activity in human bronchial cells. Cell Physiol Biochem. 2007; 20 : 483–94. [Google Scholar]
- Leroy C, Dagenais A, Berthiaume Y, Brochiero E. Molecular identity and function in transepithelial transport of K(ATP) channels in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 286 : L1027–37. [Google Scholar]
- Ridge FP, Duszyk M, French AS. A large conductance, Ca2+-activated K+ channel in a human lung epithelial cell line (A549). Biochim Biophys Acta 1997; 1327 : 249–58. [Google Scholar]
- Kunzelmann K, Pavenstadt H, Beck C, et al. Characterization of potassium channels in respiratory cells. I. General properties. Pflug Arch 1989; 414 : 291–6. [Google Scholar]
- Monaghan AS, Baines DL, Kemp PJ, Olver RE. Inwardly rectifying K+ currents of alveolar type II cells isolated from fetal guinea-pig lung: regulation by G protein- and Mg2+-dependent pathways. Pflugers Arch. 1997; 433 : 294–303. [Google Scholar]
- Doring F, Derst C, Wischmeyer E, et al. The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties. J Neurosci 1998; 18 : 8625–36. [Google Scholar]
- Plummer HK III, Dhar MS, Cekanova M, Schuller HM. Expression of G-protein inwardly rectifying potassium channels (GIRKs) in lung cancer cell lines. BMC Cancer 2005; 5 : 104. [Google Scholar]
- Inglis SK, Brown SG, Constable MJ, et al. A Ba2+-resistant, acid-sensitive K+ conductance in Na+-absorbing H441 human airway epithelial cells. Am J Physiol Lung Cell Mol. Physiol 2007; 292 : L1304–12. [Google Scholar]
- Davis KA, Cowley EA. Two-pore-domain potassium channels support anion secretion from human airway Calu-3 epithelial cells. Pflug Arch 2006; 451 : 631–41. [Google Scholar]
- Kemp PJ, Lewis A, Hartness ME, et al. Airway chemotransduction: from oxygen sensor to cellular effector. Am J Respir Crit Care Med 2002; 166 : S17–24. [Google Scholar]
- O’Grady SM, Lee SY. Molecular diversity and function of voltage-gated (Kv) potassium channels in epithelial cells. Int J Biochem Cell Biol 2005; 37 : 1578–94. [Google Scholar]
- Lopez-Barneo J, del Toro R, Levitsky KL, Chiara MD, Ortega-Saenz P. Regulation of oxygen sensing by ion channels. J Appl Physiol 2004; 96 : 1187–95. [Google Scholar]
- Lewis A, Peers C, Ashford ML, Kemp PJ. Hypoxia inhibits human recombinant large conductance, Ca2+-activated K+ (maxi-K) channels by a mechanism which is membrane delimited and Ca2+ sensitive. J Physiol 2002; 540 : 771–80. [Google Scholar]
- Haller T, Auktor K, Frick M, et al. Threshold calcium levels for lamellar body exocytosis in type II pneumocytes. Am J Physiol 1999; 277 : L893–900. [Google Scholar]
- Wadsworth SJ, Chander A. H+-and K+-dependence of Ca2+ uptake in lung lamellar bodies. J Membr.Biol. 2000; 174 : 41–51. [Google Scholar]
- Coraux C, Hajj R, Lesimple P, Puchelle E. Repair and regeneration of the airway epithelium. Med Sci (Paris) 2005; 21 : 1063–9. [Google Scholar]
- Wang L, Xu B, White RE, Lu L. Growth factor-mediated K+ channel activity associated with human myeloblastic ML-1 cell proliferation. Am J Physiol 1997; 273 : C1657–65. [Google Scholar]
- Wang Z. Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflug Arch 2004; 448 : 274–86. [Google Scholar]
- Schwab A, Nechyporuk-Zloy V, Fabian A, Stock C. Cells move when ions and water flow. Pflug Arch 2007; 453 : 421–32. [Google Scholar]
- Jin X, Malykhina AP, Lupu F, Akbarali HI. Altered gene expression and increased bursting activity of colonic smooth muscle ATP-sensitive K+ channels in experimental colitis. Am J Physiol Gastrointest Liver Physiol 2004; 287 : G274–85. [Google Scholar]
- Lu G, Mazet B, Sun C, et al. Inflammatory modulation of calcium-activated potassium channels in canine colonic circular smooth muscle cells. Gastroenterology 1999; 116 : 884–92. [Google Scholar]
- El Ani D, Zimlichman R. TNF-alpha stimulated ATP-sensitive potassium channels and attenuated deoxyglucose and Ca uptake of H9c2 cardiomyocytes. Ann NY Acad Sci 2003; 1010 : 716–20. [Google Scholar]
- Maruyama N, Kakuta Y, Yamauchi K, et al. Quinine inhibits production of tumor necrosis factor-alpha from human alveolar macrophages. Am J Respir Cell Mol Biol 1994; 10 : 514–20. [Google Scholar]
- Pompermayer K, Amaral FA, Fagundes CT, et al. Effects of the treatment with glibenclamide, an ATP-sensitive potassium channel blocker, on intestinal ischemia and reperfusion injury. Eur J Pharmacol 2007; 556 : 215–22. [Google Scholar]
- Cruse G, Duffy SM, Brightling CE, Bradding P. Functional KCa3.1 K+ channels are required for human lung mast cell migration. Thorax 2006; 61 : 880–5. [Google Scholar]
- Olver RE, Walters DV, Wilson M. Developmental regulation of lung liquid transport. Annu. Rev Physiol 2004; 66 : 77–101. [Google Scholar]
- Boucher RC. New concepts of the pathogenesis of cystic fibrosis lung disease. Eur. Respir. J 2004; 23 : 146–58. [Google Scholar]
- Sakuma T, Takahashi K, Ohya N, Nakada T, Matthay MA. Effects of ATP-sensitive potassium channel opener on potassium transport and alveolar fluid clearance in the resected human lung. Pharmacol Toxicol 1998; 83 : 16–22. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.