Free Access
Med Sci (Paris)
Volume 24, Number 12, Décembre 2008
Page(s) 1083 - 1088
Section M/S revues
Published online 15 December 2008
  1. Baeuerle PA, Henkel T. Function and activation of NF-κB in the immune system. Annu Rev Immunol 1994; 12 : 141–79. [Google Scholar]
  2. Barnes PJ, Karin M. Nuclear factor-κB : a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336 : 1066–71. [Google Scholar]
  3. Karin M, Lin A. NF-κB at the crossroads of life and death. Nat Immunol 2002; 3 : 221–7. [Google Scholar]
  4. Karin M, Cao Y, Greten F, Li ZW. NF-κB in cancer : from innocent bystander to major culprit. Nat Rev Cancer 2002; 2 : 301–10. [Google Scholar]
  5. Rayet B, Gélinas C. Aberrant Rel/NF-kB genes and activity in human cancer. Oncogene 1999; 18 : 6938–47. [Google Scholar]
  6. Wang CY, Cusack JC, Liu R, Baldwin AS. Control of inducible chemoresistance : enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-κB. Nat Med 1999; 5 : 412–17. [Google Scholar]
  7. Gilmore TD. NF-kappa B, KBF1, dorsal, and related matters. Cell 1990; 62 : 841–3. [Google Scholar]
  8. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination : the control of NF-κB activity. Annu Rev Immunol 2000; 18 : 621–63. [Google Scholar]
  9. Dejardin E. The alternative NF-kappaB pathway from biochemistry to biology : pitfalls and promises for future drug development. Biochem Pharmacol 2006; 72 : 1161–79. [Google Scholar]
  10. Liao G, Zhang M, Harhaj EW, Sun SC. Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem 2004; 279 : 26243–50. [Google Scholar]
  11. Derudder E, Dejardin E, Pritchard LL, et al. RelB/p50 dimers are differentially regulated by tumor necrosis factor-alpha and lymphotoxin-beta receptor activation : critical roles for p100. J Biol Chem 2003; 278 : 23278–84. [Google Scholar]
  12. Dejardin E, Droin NM, Delhase M, et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 2002; 17 : 525–35. [Google Scholar]
  13. Jacque E, Tchenio T, Piton G, et al. RelA repression of RelB activity induces selective gene activation downstream of TNF receptors. Proc Natl Acad Sci USA 2005; 102 : 14635–40. [Google Scholar]
  14. Jacque E, Baud V. RelA, un nouvel acteur dans la régulation de l’activité de RelB. Med Sci (Paris) 2006; 22 : 113–4. [Google Scholar]
  15. Gautheron J, Courtois, G. Les nouvelles fonctions de NEMO, la sous-unité régulatrice de la kinase activant NF-κB. Med Sci (Paris) 2008; 24 : 954–60. [Google Scholar]
  16. Annunziata CM, Davis RE, Demchenko Y, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12 : 115–30. [Google Scholar]
  17. Keats JJ, Fonseca R, Chesi M, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007; 12 : 131–44. [Google Scholar]
  18. Stoffel A, Chaurushiya M, Singh B, Levine AJ. Activation of NF-kappaB and inhibition of p53-mediated apoptosis by API2/mucosa-associated lymphoid tissue 1 fusions promote oncogenesis. Proc Natl Acad Sci USA 2004; 101 : 9079–84. [Google Scholar]
  19. Mineva RD, Rothstein TL, Meyers JA, et al. CD40 ligand-mediated activation of the de novo RelB NF-kB synthesis pathway in transformed B cells promotes rescue from apoptosis. J Biol Chem 2007; 282 : 17475–85. [Google Scholar]
  20. Dos Santos NR, Williame M, Gachet S, et al. RelB-dependent stromal cells promote T-cell leukemogenesis. PLos One 2008; 3 : e2555. [Google Scholar]
  21. Zhang J, Chang CC, Lombardi L, Dalla-Favera R. Rearranged NFκB2 gene in the HUT78 T-lymphoma cell line codes for a constitutively nuclear factor lacking transcriptional repressor functions. Oncogene 1994; 9 : 1931–7. [Google Scholar]
  22. Neri A, Fracchiolla NS, Migliazza A, et al. The involvement of the candidate proto-oncogene NFKB2/lyt-10 in lymphoid malignancies. Leuk Lymphoma 1996; 23 : 43–8. [Google Scholar]
  23. Derudder E, Laferte A, Ferreira V, et al. Identification and characterization of p100HB, a new mutant form of p100/NF-kappa B2. Biochem Biophys Res Commun 2003; 308 : 744–9. [Google Scholar]
  24. Hacker H, Karin M. Is NF-kappaB2/p100 a direct activator of programmed cell death ? Cancer Cell 2002; 2 : 431–3. [Google Scholar]
  25. Malinge S, Monni R, Bernard O, Penard-Lacronique V. Activation of the NF-kappaB pathway by the leukemogenic TEL-Jak2 and TEL-Abl fusion proteins leads to the accumulation of antiapoptotic IAP proteins and involves IKKalpha. Oncogene 2006; 25 : 3589–97. [Google Scholar]
  26. Demicco EG, Kavanagh KT, Romieu-Mourez R, et al. RelB/p52 NF-kappaB complexes rescue an early delay in mammary gland development in transgenic mice with targeted superrepressor IkappaB-alpha expression and promote carcinogenesis of the mammary gland. Mol Cell Biol 2005; 25 : 10136–47. [Google Scholar]
  27. Romieu-Mourez R, Kim DW, Shin SM, et al. Mouse mammary tumor virus c-rel transgenic mice develop mammary tumors. Mol Cell Biol 2003; 23 : 5738–54. [Google Scholar]
  28. Connelly L, Robinson-Benion C, Chont M, et al. A transgenic model reveals important roles for the NF-kappa B alternative pathway (p100/p52) in mammary development and links to tumorigenesis. J Biol Chem 2007; 282 : 10028–35. [Google Scholar]
  29. Wang X, Belguise K, Kersual N, et al. Estrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol 2007; 9 : 470–8. [Google Scholar]
  30. Lessard L, Begin LR, Gleave ME, et al. Nuclear localisation of nuclear factor-kappaB transcription factors in prostate cancer : an immunohistochemical study. Br J Cancer 2005; 93 : 1019–23. [Google Scholar]
  31. Josson S, Xu Y, Fang F, et al. RelB regulates manganese superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells. Oncogene 2006; 25 : 1554–9. [Google Scholar]
  32. Xu Y, Fang F, St Clair DK, et al. Suppression of RelB-mediated manganese superoxide dismutase expression reveals a primary mechanism for radiosensitization effect of 1alpha,25-dihydroxyvitamin D(3) in prostate cancer cells. Mol Cancer Ther 2007; 6 : 2048–56. [Google Scholar]
  33. Hu Y, Baud V, Delhase M, et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 1999; 284 : 316–20. [Google Scholar]
  34. Liu B, Park E, Zhu F, et al. A critical role for I kappaB kinase alpha in the development of human and mouse squamous cell carcinomas. Proc Natl Acad Sci USA 2006; 103 : 17202–7. [Google Scholar]
  35. Park E, Zhu F, Liu B, et al. Reduction in IkappaB kinase alpha expression promotes the development of skin papillomas and carcinomas. Cancer Res 2007; 67 : 9158–68. [Google Scholar]
  36. Zhu F, Xia X, Liu B, et al. IKKalpha shields 14-3-3sigma, a G(2)/M cell cycle checkpoint gene, from hypermethylation, preventing its silencing. Mol Cell 2007; 27 : 214–27. [Google Scholar]
  37. Lobry C, Weil R. Mécanismes régulateurs de la voie NF-κB dans les lymphocytes T. Med Sci (Paris) 2007; 23 : 857–61. [Google Scholar]
  38. Lobry C, Weil R. Nouveaux mécanismes régulateurs de Bcl10 : Une avancée dans la compréhension de la survenue des lymphomes du MALT ? Med Sci (Paris) 2007; 23 : 353–5. [Google Scholar]
  39. Romagnoli M, Séveno C, Bataille R, Barillé-Nion S. Survivine en cancérologie : aspects moléculaires et applications thérapeutiques. Med Sci (Paris) 2008; 24 : 821–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.