Free Access
Issue
Med Sci (Paris)
Volume 24, Number 10, Octobre 2008
Page(s) 859 - 864
Section M/S revues
DOI https://doi.org/10.1051/medsci/20082410859
Published online 15 October 2008
  1. Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 1957; 147 : 258–67. [Google Scholar]
  2. Krause D, Silverman RH, Jacobsen H, et al. Regulation of ppp(A2’p)nA-dependent RNase levels during interferon treatment and cell differentiation. Eur J Biochem 1985; 146 : 611–8. [Google Scholar]
  3. Kerr IM, Brown RE, Ball LA. Increased sensitivity of cell-free protein synthesis to double-stranded RNA after interferon treatment. Nature 1974; 250 : 57–9. [Google Scholar]
  4. Brown GE, Lebleu B, Kawakita M, et al. Increased endonuclease activity in an extract from mouse Ehrlich ascites tumor cells which had been treated with a partially purified interferon preparation : dependence of double-stranded RNA. Biochem Biophys Res Commun 1976; 69 : 114–22. [Google Scholar]
  5. Clemens MJ, Williams BR. Inhibition of cell-free protein synthesis by pppA2’p5’A2’p5’A : a novel oligonucleotide synthesized by interferon-treated L cell extracts. Cell 1978; 13 : 565–72. [Google Scholar]
  6. Baglioni C, Minks MA, Maroney PA. Interferon action may be mediated by activation of a nuclease by pppA2’p5’A2’p5’A. Nature 1978; 273 : 684–7. [Google Scholar]
  7. Hovanessian AG, Brown RE, Kerr IM. Synthesis of low molecular weight inhibitor of protein synthesis with enzyme from interferon-treated cells. Nature 1977; 268 : 537–40. [Google Scholar]
  8. Hovanessian AG, Justesen J. The human 2’-5’oligoadenylate synthetase family : unique interferon-inducible enzymes catalyzing 2’-5’ instead of 3’-5’ phosphodiester bond formation. Biochimie 2007; 89 : 779–88. [Google Scholar]
  9. Zhou A, Hassel BA, Silverman RH. Expression cloning of 2-5A-dependent RNAase : a uniquely regulated mediator of interferon action. Cell 1993; 72 : 753–65. [Google Scholar]
  10. Tanaka N, Nakanishi M, Kusakabe Y, et al. Structural basis for recognition of 2’,5’-linked oligoadenylates by human ribonuclease L. EMBO J 2004; 23 : 3929–38. [Google Scholar]
  11. Cole JL, Carroll SS, Kuo LC. Stoichiometry of 2’,5’-oligoadenylate-induced dimerization of ribonuclease L. A sedimentation equilibrium study. J Biol Chem 1996; 271 : 3979–81. [Google Scholar]
  12. Nakanishi M, Goto Y, Kitade Y. 2-5A induces a conformational change in the ankyrin-repeat domain of RNase L. Proteins 2005; 60 : 131–8. [Google Scholar]
  13. Dong B, Silverman RH. A bipartite model of 2-5A-dependent RNase L. J Biol Chem 1997; 272 : 22236–42. [Google Scholar]
  14. Le Roy F, Salehzada T, Bisbal C, et al. A newly discovered function for RNase L in regulating translation termination. Nat Struct Mol Biol 2005; 12 : 505–12. [Google Scholar]
  15. Sidrauski C, Walter P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 1997; 90 : 1031–9. [Google Scholar]
  16. Silverman RH. A scientific journey through the 2-5A/RNase L system. Cytokine Growth Factor Rev 2007; 18 : 381–8. [Google Scholar]
  17. Georgel P, Bahram S. Immunité innée antivirale : rôle des mécanismesToll-dépendants. Med Sci (Paris) 2006; 22 : 961–68. [Google Scholar]
  18. Delneste Y, Beauvillain C, Jeannin P. Immunité naturelle : structure et fonction des Toll-like receptors. Med Sci (Paris) 2007; 23 : 67–73. [Google Scholar]
  19. Malathi K, Dong B, Gale M Jr, Silverman RH. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 2007; 448 : 816–9. [Google Scholar]
  20. Bisbal C. Cliver les ARN du soi donne du punch à la réponse innée antivirale. Med Sci (Paris) 2008; 24 : 23–5. [Google Scholar]
  21. Liang SL, Quirk D, Zhou A. RNase L : its biological roles and regulation. IUBMB Life 2006; 58 : 508–14. [Google Scholar]
  22. Bisbal C, Silverman RH. Diverse functions of RNase L and implications in pathology. Biochimie 2007; 89 : 789–98. [Google Scholar]
  23. Silverman RH. Viral encounters with OAS and RNase L during the IFN antiviral response. J Virol 2007. [Google Scholar]
  24. Gribaudo G, Lembo D, Cavallo G, et al. Interferon action : binding of viral RNA to the 40-kilodalton 2’-5’- oligoadenylate synthetase in interferon-treated HeLa cells infected with encephalomyocarditis virus. J Virol 1991; 65 : 1748–57. [Google Scholar]
  25. Castelli JC, Hassel BA, Maran A, et al. The role of 2’-5’ oligoadenylate-activated ribonuclease L in apoptosis. Cell Death Differ 1998; 5 : 313–20. [Google Scholar]
  26. Diaz GM, Rivas C, Esteban M. Activation of the IFN-inducible enzyme RNase L causes apoptosis of animal cells. Virology 1997; 236 : 354–63. [Google Scholar]
  27. Zhou A, Paranjape J, Brown TL, et al. Interferon action and apoptosis are defective in mice devoid of 2’,5’- oligoadenylate-dependent RNase L. EMBO J 1997; 16 : 6355–63. [Google Scholar]
  28. Rusch L, Zhou A, Silverman RH. Caspase-dependent apoptosis by 2’,5’-oligoadenylate activation of RNase L is enhanced by IFN-beta. J Interferon Cytokine Res 2000; 20 : 1091–100. [Google Scholar]
  29. Le Roy F, Silhol M, Salehzada T, Bisbal C. Regulation of mitochondrial mRNA stability by RNase L is translation-dependent and controls IFNalpha-induced apoptosis. Cell Death Differ 2007; 14 : 1406–13. [Google Scholar]
  30. Li G, Xiang Y, Sabapathy K, Silverman RH. An apoptotic signaling pathway in the interferon antiviral response mediated by RNase L and c-Jun NH2-terminal kinase. J Biol Chem 2004; 279 : 1123–31. [Google Scholar]
  31. Chandrasekaran K, Mehrabian Z, Li XL, Hassel B. RNase-L regulates the stability of mitochondrial DNA-encoded mRNAs in mouse embryo fibroblasts. Biochem Biophys Res Commun 2004; 325 : 18–23. [Google Scholar]
  32. Bisbal C, Martinand C, Silhol M, et al. Cloning and characterization of a RNAse L inhibitor. A new component of the interferon-regulated 2-5A pathway. J Biol Chem 1995; 270 : 13308–17. [Google Scholar]
  33. Martinand C, Montavon C, Salehzada T, et al. RNase L inhibitor is induced during human immunodeficiency virus type 1 infection and down regulates the 2-5A/RNase L pathway in human T cells. J Virol 1999; 73 : 290–6. [Google Scholar]
  34. Camier S, Séraphin B. Détruisez ce message (ARN) après l’avoir lu ! Med Sci (Paris) 2007; 23 : 850–56. [Google Scholar]
  35. Li XL, Blackford JA, Judge CS, et al. RNase-L-dependent destabilization of interferon-induced mRNAs. A role for the 2-5A system in attenuation of the interferon response. J Biol Chem 2000; 275 : 8880–8. [Google Scholar]
  36. Khabar KS, Siddiqui YM, al-Zoghaibi F, et al. RNase L mediates transient control of the interferon response through modulation of the double-stranded RNA-dependent protein kinase PKR. J Biol Chem 2003; 278 : 20124–32. [Google Scholar]
  37. Bisbal C, Silhol M, Laubenthal H, et al. The 2’-5’ oligoadenylate/RNase L/RNase L inhibitor pathway regulates both MyoD mRNA stability and muscle cell differentiation. Mol Cell Biol 2000; 20 : 4959–69. [Google Scholar]
  38. Malathi K, Paranjape JM, Bulanova E, et al. A transcriptional signaling pathway in the IFN system mediated by 2’-5’-oligoadenylate activation of RNase L. Proc Natl Acad Sci USA 2005; 102 : 14533–8. [Google Scholar]
  39. Liu W, Liang SL, Liu H, et al. Tumour suppressor function of RNase L in a mouse model. Eur J Cancer 2007; 43 : 202–9. [Google Scholar]
  40. Carpten J, Nupponen N, Isaacs S, et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 2002; 30 : 181–4. [Google Scholar]
  41. Urisman A, Molinaro RJ, Fischer N, et al. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog 2006; 2 : e25. [Google Scholar]
  42. Bartsch DK, Fendrich V, Slater EP, et al. RNASEL germline variants are associated with pancreatic cancer. Int J Cancer 2005; 117 : 718–22. [Google Scholar]
  43. Kruger S, Silber AS, Engel C, et al. Arg462Gln sequence variation in the prostate-cancer-susceptibility gene RNASEL and age of onset of hereditary non-polyposis colorectal cancer : a case-control study. Lancet Oncol 2005; 6 : 566–72. [Google Scholar]
  44. Nijs J, Frémont M. Intracellular immune dysfunction in myalgic encephalomyelitis/chronic fatigue syndrome : state of the art and therapeutic implications. Expert Opin Ther Targets 2008; 12 : 281–89. [Google Scholar]
  45. Silberman B, Launay O. Prévention des infections à papillomavirus et du zona : nouveaux vaccins. Med Sci (Paris) 2007; 23 : 423–7. [Google Scholar]
  46. Thakur CS, Jha BK, Dong B, et al. Small-molecule activators of RNase L with broad-spectrum antiviral activity. Proc Natl Acad Sci USA 2007; 104 : 9585–90. [Google Scholar]
  47. Cussenot O, Cancel-Tassin G. Facteurs de risque génétiques pour le cancer de la prostate. Med Sci (Paris) 2004; 20 : 562–8. [Google Scholar]
  48. Darlix JL, Sitbon M. Le cancer de la prostate conduit à la découverte d’un nouveau rétrovirus infectieux humain. Med Sci (Paris) 2007; 23 : 690–1. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.