Free Access
Med Sci (Paris)
Volume 24, Number 6-7, Juin-Juillet 2008
Page(s) 615 - 620
Section M/S revues
Published online 15 June 2008
  1. De Verneuil H, Ged C, Moreau-Gaudry F, et al. Les porphyries héréditaires : de la pathologie moléculaire à la thérapie génique. Med Sci (Paris) 1995; 11 : 873–8. [Google Scholar]
  2. Anderson KE, Sassa S, Bishop DF, Desnick RJ. Disorders of heme biosynthesis : X-linked sideroblastic anemia and the porphyrias. In : Scriver CR, Beaudet AL, Sly WS, Valle D, eds. New York : McGraw Hill, 2001 : 2991–3062. [Google Scholar]
  3. De Verneuil H, Moreau-Gaudry F, Ged C. Congenital erythropoietic porphyria. In : Kadish KM, Smith KV, Guilard R, eds. The porphyria handbook. Amsterdam : Academic Press-Elsevier Science, 2003 : 43–66. [Google Scholar]
  4. Dupuis-Girod S, Akkari V, Ged C, et al. Successful match-unrelated donor bone marrow transplantation for congenital erythropoietic porphyria (Gunther disease). Eur J Pediatr 2005; 164 : 104–7. [Google Scholar]
  5. Phillips JD, Steensma DP, Pulsipher MA, et al. Congenital erythropoietic porphyria due to a mutation in GATA1 : the first trans-acting mutation causative for a human porphyria. Blood 2007; 109 : 2618–21. [Google Scholar]
  6. Taibjee SM, Stevenson OE, Abdullah A, et al. Allogeneic bone marrow transplantation in a 7-year-old girl with congenital erythropoietic porphyria : a treatment dilemma. Br J Dermatol 2007; 156 : 567–71. [Google Scholar]
  7. Faraci M, Morreale G, Boeri E, et al. Unrelated HSCT in an adolescent affected by congenital erythropoietic porphyria. Pediatr Transplant 2008; 12 : 117–20. [Google Scholar]
  8. Ged C, Mendez M, Robert E, et al. A knock-in mouse model of congenital erythropoietic porphyria. Genomics 2006; 87 : 84–92. [Google Scholar]
  9. Robert-Richard E, Moreau-Gaudry F, Lalanne M, et al. Effective gene therapy of mice with congenital erythropoietic porphyria is facilitated by a survival advantage of corrected erythroid cells. Am J Hum Genet 2008; 82 : 113–24. [Google Scholar]
  10. Pawliuk R, Bachelot T, Wise RJ, et al. Long-term cure of the photosensitivity of murine erythropoietic protoporphyria by preselective gene therapy. Nat Med 1999; 5 : 768–73. [Google Scholar]
  11. Fontanellas A, Mendez M, Mazurier F, et al. Successful therapeutic effect in a mouse model of erythropoietic protoporphyria by partial genetic correction and fluorescence-based selection of hematopoietic cells. Gene Ther 2001; 8 : 618–26. [Google Scholar]
  12. Richard E, Mendez M, Mazurier F, et al. Gene therapy of a mouse model of protoporphyria with a self-inactivating erythroid-specific lentiviral vector without preselection. Mol Ther 2001; 4 : 331–8. [Google Scholar]
  13. Mazurier F, Géronimi F, Lamrissi-Garcia I, et al. Correction of deficient CD34+ cells from peripheral blood after mobilization in a patient with congenital erythropoietic porphyria. Mol Ther 2001; 3 : 411–7. [Google Scholar]
  14. Moreau-Gaudry F, Mazurier F, Bensidhoum M, et al. Metabolic correction of congenital erythropoietic porphyria by retrovirus-mediated gene transfer into Epstein-Barr virus-transformed B-cell lines. Blood 1995; 85 : 1449–53. [Google Scholar]
  15. Géronimi F, Richard E, Lamrissi-Garcia I, et al. Lentivirus-mediated gene transfer of uroporphyrinogen III synthase fully corrects the porphyric phenotype in human cells. J Mol Med 2003; 81 : 310–20. [Google Scholar]
  16. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-Associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302 : 415–9 et 568. [Google Scholar]
  17. Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. Thérapie génique du déficit immunitaire combiné sévère lié à l’X : efficacité et complications. Med Sci (Paris) 2004; 20 : 115–7. [Google Scholar]
  18. Wilson JM. Adverse events in gene transfer trials and an agenda for the new year. Hum Gene Ther 2008; 19 : 1–2. [Google Scholar]
  19. Chang AH, Sadelain M. The genetic engineering of hematopoietic stem cells : the rise of lentiviral vectors, the conundrum of the LTR, and the promise of lineage-restricted vectors. Mol Ther 2007; 15 : 445–56. [Google Scholar]
  20. Levine BL, Humeau LM, Boyer J, et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci USA 2006; 103 : 17372–7. [Google Scholar]
  21. Cattoglio C, Facchini G, Sartori D, et al. Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 2007; 110 : 1770–8. [Google Scholar]
  22. Robert-Richard E, Richard E, Malik P, et al. Murine retroviral but not human cellular promoters induce in vivo erythroid-specific deregulation that can be partially prevented by insulators. Mol Ther 2007; 15 : 173–82. [Google Scholar]
  23. Arumugam PI, Scholes J, Perelman N, et al. Improved human beta-globin expression from self-inactivating lentiviral vectors carrying the chicken hypersensitive site-4 (cHS4) insulator element. Mol Ther 2007; 15 : 1863–71. [Google Scholar]
  24. Schambach A, Bohne J, Baum C, et al. Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Ther 2006; 13 : 641–5. [Google Scholar]
  25. Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. Thérapie génique du déficit immunitaire combiné sévère lié à l’X. Med Sci (Paris) 2004; 20 : 115–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.