Accès gratuit
Numéro
Med Sci (Paris)
Volume 24, Numéro 6-7, Juin-Juillet 2008
Page(s) 615 - 620
Section M/S revues
DOI https://doi.org/10.1051/medsci/20082467615
Publié en ligne 15 juin 2008
  1. De Verneuil H, Ged C, Moreau-Gaudry F, et al. Les porphyries héréditaires : de la pathologie moléculaire à la thérapie génique. Med Sci (Paris) 1995; 11 : 873–8. [Google Scholar]
  2. Anderson KE, Sassa S, Bishop DF, Desnick RJ. Disorders of heme biosynthesis : X-linked sideroblastic anemia and the porphyrias. In : Scriver CR, Beaudet AL, Sly WS, Valle D, eds. New York : McGraw Hill, 2001 : 2991–3062. [Google Scholar]
  3. De Verneuil H, Moreau-Gaudry F, Ged C. Congenital erythropoietic porphyria. In : Kadish KM, Smith KV, Guilard R, eds. The porphyria handbook. Amsterdam : Academic Press-Elsevier Science, 2003 : 43–66. [Google Scholar]
  4. Dupuis-Girod S, Akkari V, Ged C, et al. Successful match-unrelated donor bone marrow transplantation for congenital erythropoietic porphyria (Gunther disease). Eur J Pediatr 2005; 164 : 104–7. [Google Scholar]
  5. Phillips JD, Steensma DP, Pulsipher MA, et al. Congenital erythropoietic porphyria due to a mutation in GATA1 : the first trans-acting mutation causative for a human porphyria. Blood 2007; 109 : 2618–21. [Google Scholar]
  6. Taibjee SM, Stevenson OE, Abdullah A, et al. Allogeneic bone marrow transplantation in a 7-year-old girl with congenital erythropoietic porphyria : a treatment dilemma. Br J Dermatol 2007; 156 : 567–71. [Google Scholar]
  7. Faraci M, Morreale G, Boeri E, et al. Unrelated HSCT in an adolescent affected by congenital erythropoietic porphyria. Pediatr Transplant 2008; 12 : 117–20. [Google Scholar]
  8. Ged C, Mendez M, Robert E, et al. A knock-in mouse model of congenital erythropoietic porphyria. Genomics 2006; 87 : 84–92. [Google Scholar]
  9. Robert-Richard E, Moreau-Gaudry F, Lalanne M, et al. Effective gene therapy of mice with congenital erythropoietic porphyria is facilitated by a survival advantage of corrected erythroid cells. Am J Hum Genet 2008; 82 : 113–24. [Google Scholar]
  10. Pawliuk R, Bachelot T, Wise RJ, et al. Long-term cure of the photosensitivity of murine erythropoietic protoporphyria by preselective gene therapy. Nat Med 1999; 5 : 768–73. [Google Scholar]
  11. Fontanellas A, Mendez M, Mazurier F, et al. Successful therapeutic effect in a mouse model of erythropoietic protoporphyria by partial genetic correction and fluorescence-based selection of hematopoietic cells. Gene Ther 2001; 8 : 618–26. [Google Scholar]
  12. Richard E, Mendez M, Mazurier F, et al. Gene therapy of a mouse model of protoporphyria with a self-inactivating erythroid-specific lentiviral vector without preselection. Mol Ther 2001; 4 : 331–8. [Google Scholar]
  13. Mazurier F, Géronimi F, Lamrissi-Garcia I, et al. Correction of deficient CD34+ cells from peripheral blood after mobilization in a patient with congenital erythropoietic porphyria. Mol Ther 2001; 3 : 411–7. [Google Scholar]
  14. Moreau-Gaudry F, Mazurier F, Bensidhoum M, et al. Metabolic correction of congenital erythropoietic porphyria by retrovirus-mediated gene transfer into Epstein-Barr virus-transformed B-cell lines. Blood 1995; 85 : 1449–53. [Google Scholar]
  15. Géronimi F, Richard E, Lamrissi-Garcia I, et al. Lentivirus-mediated gene transfer of uroporphyrinogen III synthase fully corrects the porphyric phenotype in human cells. J Mol Med 2003; 81 : 310–20. [Google Scholar]
  16. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-Associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302 : 415–9 et 568. [Google Scholar]
  17. Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. Thérapie génique du déficit immunitaire combiné sévère lié à l’X : efficacité et complications. Med Sci (Paris) 2004; 20 : 115–7. [Google Scholar]
  18. Wilson JM. Adverse events in gene transfer trials and an agenda for the new year. Hum Gene Ther 2008; 19 : 1–2. [Google Scholar]
  19. Chang AH, Sadelain M. The genetic engineering of hematopoietic stem cells : the rise of lentiviral vectors, the conundrum of the LTR, and the promise of lineage-restricted vectors. Mol Ther 2007; 15 : 445–56. [Google Scholar]
  20. Levine BL, Humeau LM, Boyer J, et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci USA 2006; 103 : 17372–7. [Google Scholar]
  21. Cattoglio C, Facchini G, Sartori D, et al. Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 2007; 110 : 1770–8. [Google Scholar]
  22. Robert-Richard E, Richard E, Malik P, et al. Murine retroviral but not human cellular promoters induce in vivo erythroid-specific deregulation that can be partially prevented by insulators. Mol Ther 2007; 15 : 173–82. [Google Scholar]
  23. Arumugam PI, Scholes J, Perelman N, et al. Improved human beta-globin expression from self-inactivating lentiviral vectors carrying the chicken hypersensitive site-4 (cHS4) insulator element. Mol Ther 2007; 15 : 1863–71. [Google Scholar]
  24. Schambach A, Bohne J, Baum C, et al. Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Ther 2006; 13 : 641–5. [Google Scholar]
  25. Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. Thérapie génique du déficit immunitaire combiné sévère lié à l’X. Med Sci (Paris) 2004; 20 : 115–7. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.