Free Access
Issue
Med Sci (Paris)
Volume 24, Number 5, Mai 2008
Page(s) 483 - 490
Section M/S revues
DOI https://doi.org/10.1051/medsci/2008245483
Published online 15 May 2008
  1. Sterner RW, Elser JJ. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton NJ : Princeton University Press. 2002 [Google Scholar]
  2. Reiners WA. Complementary models for ecosystems. The American Naturalist 1986; 127 : 59–73 [Google Scholar]
  3. Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH. Organism size, life history, and N:P stoichiometry: toward a unified view of cellular and ecosystem processes. BioScience 1996; 46 : 674–84 [Google Scholar]
  4. Elser JJ, Sterner RW, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems. Ecology Letters 2000; 3 : 540–50 [Google Scholar]
  5. Kuang Y, Nagy JD, Elser JJ. Biological stoichiometry of tumor dynamics: mathematical models and analysis. Discrete Continuous Dynamical Systems Series B 2004; 4 : 221–40 [Google Scholar]
  6. Mazel D, Marliere P. Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Nature 1989; 341 : 245–8 [Google Scholar]
  7. Fauchon M, Lagniel G, Aude JC, et al. Sulfur sparing in the yeast proteome in response to sulfur demand. Mol Cell 2002; 9 : 713–23 [Google Scholar]
  8. Li ZS, Lu YP, Zhen RG, et al. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci USA 1997; 94 : 42–7 [Google Scholar]
  9. Baudouin-Cornu P, Surdin-Kerjan Y, Marliere P, Thomas D. Molecular evolution of protein atomic composition. Science 2001; 293 : 297–300 [Google Scholar]
  10. Acquisti C, Kleffe J, Collins S. Oxygen content of transmembrane proteins over macroevolutionary time scales. Nature 2007; 445 : 47–52 [Google Scholar]
  11. Baudouin-Cornu P, Thomas D. Du rôle de l’oxygène dans l’évolution. Med Sci (Paris) 2007; 23 : 255–7 [Google Scholar]
  12. Bragg JG, Thomas D, Baudouin-Cornu P. Variation among species in proteomic sulphur content is related to environmental conditions. Proc Biol Sci 2006; 273 : 1293–300 [Google Scholar]
  13. Russell RJ, Ferguson JM, Hough DW, et al. The crystal structure of citrate synthase from the hyperthermophilic archaeon pyrococcus furiosus at 1.9 A resolution. Biochemistry 1997;36 : 9983–94 [Google Scholar]
  14. Baudouin-Cornu P, Schuerer K, Marliere P, Thomas D. Intimate evolution of proteins. Proteome atomic content correlates with genome base composition. J Biol Chem 2004; 279 : 5421–8 [Google Scholar]
  15. Bragg JG, Hyder CL. Nitrogen versus carbon use in prokaryotic genomes and proteomes. Proc Biol Sci 2004; 271 (suppl 5) : S374–7 [Google Scholar]
  16. Forsdyke DR, Mortimer JR. Chargaff’s legacy. Gene 2000; 261 : 127–37 [Google Scholar]
  17. McEwan CE, Gatherer D, McEwan NR. Nitrogen-fixing aerobic bacteria have higher genomic GC content than non-fixing species within the same genus. Hereditas 1998; 128 : 173–8 [Google Scholar]
  18. Singer CE, Ames BN. Sunlight ultraviolet and bacterial DNA base ratios. Science 1970; 170 : 822–5 [Google Scholar]
  19. Sueoka N. Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 1988; 85 : 2653–7 [Google Scholar]
  20. Elser JJ, Fagan WF, Subramanian S, Kumar S. Signatures of ecological resource availability in the animal and plant proteomes. Mol Biol Evol 2006; 23 : 1946–51 [Google Scholar]
  21. Elser JJ, Fagan WF, Denno RF, et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 2000; 408 : 578–80 [Google Scholar]
  22. Elser JJ, Nagy JD, Kuang Y. Biological stoichiometry: an ecological perspective on tumor dynamics. BioScience 2003; 53 : 1112–20 [Google Scholar]
  23. Elser JJ, Kyle MM, Smith MS, Nagy JD. Biological stoichiometry in human cancer. PLoS One 2007; 2 : e1028 [Google Scholar]
  24. Cellarier E, Durando X, Vasson MP, et al. Methionine dependency and cancer treatment. Cancer Treat Rev 2003; 29 : 489–99 [Google Scholar]
  25. Bragg JG, Wagner A. Protein carbon content evolves in response to carbon availability and may influence the fate of duplicated genes. Proc Biol Sci 2007; 274 : 1063–70 [Google Scholar]
  26. Lotka AJ. Contribution to the energetics of evolution. Proc Natl Acad Sci USA 1922; 8 : 147–51 [Google Scholar]
  27. Lotka AJ. Natural selection as a physical principle. Proc Natl Acad Sci USA 1922; 8 : 151–4 [Google Scholar]
  28. Andersen T, Elser JJ, Hessen DO. Stoichiometry and population dynamics. Ecology Letters 2004; 7 : 884–900 [Google Scholar]
  29. Darwin CR. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London : John Murray, 1859 [Google Scholar]
  30. Crick F. Central dogma of molecular biology. Nature 1970; 227 : 561–3 [Google Scholar]
  31. Main T, Dobberfuhl DR, Elser JJ. N:P stoichiometry and ontogeny of crustacean zooplankton: a test of the growth rate hypothesis. Limnol Oceanogr 1997; 42 : 1474–8 [Google Scholar]
  32. Vrede T, Andersen T, Hessen DO. Phosphorus distribution in three crustacean zooplankton species. Limnol Oceanogr 1998; 44 : 225–9 [Google Scholar]
  33. Gorokhova E, Dowling TE, Weider LJ, et al. Functional and ecological significance of rDNA intergenic spacer variation in a clonal organism under divergent selection for production rate. Proc Biol Sci 2002;269 : 2373–9 [Google Scholar]
  34. Elser JJ, Watts T, Bitler B, Markow TA. Ontogenetic coupling of growth rate with RNA and P contents in five species of Drosophila. Functional Ecology 2006; 20 : 846–56 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.