Accès gratuit
Med Sci (Paris)
Volume 24, Numéro 5, Mai 2008
Page(s) 483 - 490
Section M/S revues
Publié en ligne 15 mai 2008
  1. Sterner RW, Elser JJ. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton NJ : Princeton University Press. 2002 [Google Scholar]
  2. Reiners WA. Complementary models for ecosystems. The American Naturalist 1986; 127 : 59–73 [Google Scholar]
  3. Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH. Organism size, life history, and N:P stoichiometry: toward a unified view of cellular and ecosystem processes. BioScience 1996; 46 : 674–84 [Google Scholar]
  4. Elser JJ, Sterner RW, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems. Ecology Letters 2000; 3 : 540–50 [Google Scholar]
  5. Kuang Y, Nagy JD, Elser JJ. Biological stoichiometry of tumor dynamics: mathematical models and analysis. Discrete Continuous Dynamical Systems Series B 2004; 4 : 221–40 [Google Scholar]
  6. Mazel D, Marliere P. Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Nature 1989; 341 : 245–8 [Google Scholar]
  7. Fauchon M, Lagniel G, Aude JC, et al. Sulfur sparing in the yeast proteome in response to sulfur demand. Mol Cell 2002; 9 : 713–23 [Google Scholar]
  8. Li ZS, Lu YP, Zhen RG, et al. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci USA 1997; 94 : 42–7 [Google Scholar]
  9. Baudouin-Cornu P, Surdin-Kerjan Y, Marliere P, Thomas D. Molecular evolution of protein atomic composition. Science 2001; 293 : 297–300 [Google Scholar]
  10. Acquisti C, Kleffe J, Collins S. Oxygen content of transmembrane proteins over macroevolutionary time scales. Nature 2007; 445 : 47–52 [Google Scholar]
  11. Baudouin-Cornu P, Thomas D. Du rôle de l’oxygène dans l’évolution. Med Sci (Paris) 2007; 23 : 255–7 [Google Scholar]
  12. Bragg JG, Thomas D, Baudouin-Cornu P. Variation among species in proteomic sulphur content is related to environmental conditions. Proc Biol Sci 2006; 273 : 1293–300 [Google Scholar]
  13. Russell RJ, Ferguson JM, Hough DW, et al. The crystal structure of citrate synthase from the hyperthermophilic archaeon pyrococcus furiosus at 1.9 A resolution. Biochemistry 1997;36 : 9983–94 [Google Scholar]
  14. Baudouin-Cornu P, Schuerer K, Marliere P, Thomas D. Intimate evolution of proteins. Proteome atomic content correlates with genome base composition. J Biol Chem 2004; 279 : 5421–8 [Google Scholar]
  15. Bragg JG, Hyder CL. Nitrogen versus carbon use in prokaryotic genomes and proteomes. Proc Biol Sci 2004; 271 (suppl 5) : S374–7 [Google Scholar]
  16. Forsdyke DR, Mortimer JR. Chargaff’s legacy. Gene 2000; 261 : 127–37 [Google Scholar]
  17. McEwan CE, Gatherer D, McEwan NR. Nitrogen-fixing aerobic bacteria have higher genomic GC content than non-fixing species within the same genus. Hereditas 1998; 128 : 173–8 [Google Scholar]
  18. Singer CE, Ames BN. Sunlight ultraviolet and bacterial DNA base ratios. Science 1970; 170 : 822–5 [Google Scholar]
  19. Sueoka N. Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 1988; 85 : 2653–7 [Google Scholar]
  20. Elser JJ, Fagan WF, Subramanian S, Kumar S. Signatures of ecological resource availability in the animal and plant proteomes. Mol Biol Evol 2006; 23 : 1946–51 [Google Scholar]
  21. Elser JJ, Fagan WF, Denno RF, et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 2000; 408 : 578–80 [Google Scholar]
  22. Elser JJ, Nagy JD, Kuang Y. Biological stoichiometry: an ecological perspective on tumor dynamics. BioScience 2003; 53 : 1112–20 [Google Scholar]
  23. Elser JJ, Kyle MM, Smith MS, Nagy JD. Biological stoichiometry in human cancer. PLoS One 2007; 2 : e1028 [Google Scholar]
  24. Cellarier E, Durando X, Vasson MP, et al. Methionine dependency and cancer treatment. Cancer Treat Rev 2003; 29 : 489–99 [Google Scholar]
  25. Bragg JG, Wagner A. Protein carbon content evolves in response to carbon availability and may influence the fate of duplicated genes. Proc Biol Sci 2007; 274 : 1063–70 [Google Scholar]
  26. Lotka AJ. Contribution to the energetics of evolution. Proc Natl Acad Sci USA 1922; 8 : 147–51 [Google Scholar]
  27. Lotka AJ. Natural selection as a physical principle. Proc Natl Acad Sci USA 1922; 8 : 151–4 [Google Scholar]
  28. Andersen T, Elser JJ, Hessen DO. Stoichiometry and population dynamics. Ecology Letters 2004; 7 : 884–900 [Google Scholar]
  29. Darwin CR. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London : John Murray, 1859 [Google Scholar]
  30. Crick F. Central dogma of molecular biology. Nature 1970; 227 : 561–3 [Google Scholar]
  31. Main T, Dobberfuhl DR, Elser JJ. N:P stoichiometry and ontogeny of crustacean zooplankton: a test of the growth rate hypothesis. Limnol Oceanogr 1997; 42 : 1474–8 [Google Scholar]
  32. Vrede T, Andersen T, Hessen DO. Phosphorus distribution in three crustacean zooplankton species. Limnol Oceanogr 1998; 44 : 225–9 [Google Scholar]
  33. Gorokhova E, Dowling TE, Weider LJ, et al. Functional and ecological significance of rDNA intergenic spacer variation in a clonal organism under divergent selection for production rate. Proc Biol Sci 2002;269 : 2373–9 [Google Scholar]
  34. Elser JJ, Watts T, Bitler B, Markow TA. Ontogenetic coupling of growth rate with RNA and P contents in five species of Drosophila. Functional Ecology 2006; 20 : 846–56 [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.