Free Access
Issue
Med Sci (Paris)
Volume 24, Number 3, Mars 2008
Page(s) 290 - 296
Section M/S revues
DOI https://doi.org/10.1051/medsci/2008243290
Published online 15 March 2008
  1. Ross J. mRNA stability in mammalian cells. Microbiol Rev 1995; 59 : 423–450. [Google Scholar]
  2. Gillet R, Felden B. Lost in translation : le déblocage des ribosomes bactériens par le mécanisme de trans-traduction. Med Sci (Paris) 2007; 23 : 633–9 [Google Scholar]
  3. Shaw G, Kamen R. A conserved AU sequence from the 3’ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986; 46 : 659–67. [Google Scholar]
  4. Bakheet T, Williams BR, Khabar KS. ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res 2006; 34 : D111–4. [Google Scholar]
  5. Chen CYA, Shyu AB. AU-rich elements:characterization and importance in mRNA degradation. Trends Biochem Sci 1995; 20 : 465–70. [Google Scholar]
  6. Puig S, Askeland E, Thiele DJ. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 2005; 120 : 99–110. [Google Scholar]
  7. Guhaniyogi J, Brewer G. Regulation of mRNA stability in mammalian cells. Gene 2001; 265 : 11–23. [Google Scholar]
  8. Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles ? Nucleic Acids Res 2005; 33 : 7138–50. [Google Scholar]
  9. Bevilacqua A, Ceriani MC, Capaccioli S, Nicolin A. Post-transcriptional regulation of gene expression by degradation of messenger RNAs. J Cell Physiol 2003; 195 : 356–72. [Google Scholar]
  10. Gamberi C, Johnstone O, Lasko P. Drosophila RNA binding proteins. Int Rev Cytol 2006; 248 : 43–139. [Google Scholar]
  11. Liao B, Hu Y, Brewer G. Competitive binding of AUF1 and TIAR to MYC mRNA controls its translation. Nat Struct Mol Biol 2007; 14 : 511–8. [Google Scholar]
  12. Lal A, Mazan-Mamczarz K, Kawai T, et al. Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J 2004; 23 : 3092–102. [Google Scholar]
  13. Camier S, Séraphin B. Détruisez ce message (ARN) après l’avoir lu ! Med Sci (Paris) 2007; 23 : 850–6. [Google Scholar]
  14. Chen CY, Gherzi R, Ong SE, et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 2001; 107 : 451–64. [Google Scholar]
  15. Lin WJ, Duffy A, Chen CY. Localization of AU-rich element-containing mRNA in cytoplasmic granules containing exosome subunits. J Biol Chem 2007; 282 : 19958–68. [Google Scholar]
  16. Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell 2007; 25 : 635–46. [Google Scholar]
  17. Eulalio A, Behm-Ansmant I, Izaurralde E. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 2007; 8 : 9–22. [Google Scholar]
  18. Kedersha N, Stoecklin G, Ayodele M, et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 2005; 169 : 871–84. [Google Scholar]
  19. Bhattacharyya SN, Habermacher R, Martine U, et al. Relief of microRNA-Mediated Translational Repression in Human Cells Subjected to Stress. Cell 2006; 125 : 1111–24. [Google Scholar]
  20. Jing Q, Huang S, Guth S, et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 2005; 120 : 623–34. [Google Scholar]
  21. Lopez de Silanes L, Quesada P, Esteller M. Aberrant regulation of messenger RNA 3’-untranslated region in human cancer. Cell Oncol 2007; 29 : 1–17. [Google Scholar]
  22. Wiemer EA. The role of microRNAs in cancer: no small matter. Eur J Cancer 2007; 43 : 1529–44. [Google Scholar]
  23. Langa F, Lafon I, Vandormael-Pournin S, et al. Healthy mice with an altered c-myc gene: role of the 3’ untranslated region revisited. Oncogene 2001; 20 : 4344–53. [Google Scholar]
  24. Sparanese D, Lee CH. CRD-BP shields c-myc and MDR-1 RNA from endonucleolytic attack by a mammalian endoribonuclease. Nucleic Acids Res 2007; 35 : 1209–21. [Google Scholar]
  25. Noubissi FK, Elcheva I, Bhatia N, et al. CRD-BP mediates stabilization of betaTrCP1 and c-myc mRNA in response to beta-catenin signalling. Nature 2006; 441 : 898–901. [Google Scholar]
  26. Blaxall BC, Pende A, Wu SC, Port JD. Correlation between intrinsic mRNA stability and the affinity of AUF1 (hnRNP D) and HuR for A + U-rich mRNAs. Mol Cell Biochem 2002; 232 : 1–11. [Google Scholar]
  27. Fialcowitz EJ, Brewer BY, Keenan BP, Wilson GM. A hairpin-like structure within an AU-rich mRNA-destabilizing element regulates trans-factor binding selectivity and mRNA decay kinetics. J Biol Chem 2005; 280 : 22406–17. [Google Scholar]
  28. Espel E. The role of the AU-rich elements of mRNAs in controlling translation. Semin Cell Dev Biol 2005; 16 : 59–67. [Google Scholar]
  29. Kontoyiannis D, Pasparakis M, Pizarro TT, et al. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 1999; 10 : 387–98. [Google Scholar]
  30. Taylor GA, Carballo E, Lee DM, et al. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 1996; 4 : 445–54. [Google Scholar]
  31. Carballo E, Lai W, Blackshear P. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 2000; 95 : 1891–9. [Google Scholar]
  32. Ogilvie RL, Abelson M, Hau HH, et al. Tristetraprolin down-regulates IL-2 gene expression through AU-rich element-mediated mRNA decay. J Immunol 2005; 174 : 953–61. [Google Scholar]
  33. Houzet L, Morello D, Defrance P, et al. Regulated control by GM-CSF AU-rich element during mouse embryogenesis. Blood 2001; 9 : 1281–8. [Google Scholar]
  34. Lu JY, Sadri N, Schneider RJ. Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev 2006; 20 : 3174–84. [Google Scholar]
  35. Piecyk M, Wax S, Beck AR, et al. TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. EMBO J 2000; 19 : 4154–63. [Google Scholar]
  36. Phillips K, Kedersha N, Shen L, et al. Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor alpha, cyclooxygenase 2, and inflammatory arthritis. Proc Natl Acad Sci USA 2004; 101 : 2011–6. [Google Scholar]
  37. Katsanou V, Papadaki O, Milatos S, et al. HuR as a negative posttranscriptional modulator in inflammation. Mol Cell 2005; 19 : 777–89. [Google Scholar]
  38. Saklatvala J. The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol 2004; 4 : 372–7. [Google Scholar]
  39. Hitti E, Iakovleva T, Brook M, et al. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol Cell Biol 2006; 26 : 2399–407. [Google Scholar]
  40. Fawal M, Armstrong F, Ollier S, et al. « Liaison dangereuse » between AUF1/hnRNPD and the oncogenic tyrosine kinase NPM-ALK. Blood 2006; 108 : 2780–8. [Google Scholar]
  41. Tafech A, Bennett WR, Mills F, Lee CH. Identification of c-myc coding region determinant RNA sequences and structures cleaved by an RNase1-like endoribonuclease. Biochim Biophys Acta 2007; 1769 : 49–60. [Google Scholar]
  42. Rajasingh J, Bord E, Luedemann C, et al. IL-10-induced TNF-alpha mRNA destabilization is mediated via IL-10 suppression of p38 MAP kinase activation and inhibition of HuR expression. Faseb J 2006; 20 : 2112–4. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.