Free Access
Issue
Med Sci (Paris)
Volume 24, Number 3, Mars 2008
Page(s) 226 - 228
Section Nouvelles
DOI https://doi.org/10.1051/medsci/2008243226
Published online 15 March 2008
  1. Everett LA, Green ED. A family of mammalian anion transporters and their involvement in human genetic diseases. Hum Mol Genet 1999; 8 : 1883–91. [Google Scholar]
  2. Dawson PA, Markovich D. Pathogenetics of the human SLC26 transporters. Curr Med Chem 2005; 12 : 385–96. [Google Scholar]
  3. Hastbacka J, De la Chapelle A, Mahtani MM, et al. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 1994; 78 : 1073–87. [Google Scholar]
  4. Karniski LP. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene: correlation between sulfate transport activity and chondrodysplasia phenotype. Hum Mol Genet 2001; 10 : 1485–90. [Google Scholar]
  5. Rossi A, Bonaventure J, Delezoide AL, et al. Undersulfation of proteoglycans synthesized by chondrocytes from a patient with achondrogenesis type 1B homozygous for an L483P substitution in the diastrophic dysplasia sulfate transporter. J Biol Chem 1996; 271 : 18456–64. [Google Scholar]
  6. Sheffield VC, Kraiem Z, Beck JC, et al. Pendred syndrome maps to chromosome 7q21-34 and is caused by an intrinsic defect in thyroid iodine organification. Nat Genet 1996; 12 : 424–6. [Google Scholar]
  7. Coyle B, Coffey R, Armour JA, et al. Pendred syndrome (goitre and sensorineural hearing loss) maps to chromosome 7 in the region containing the nonsyndromic deafness gene DFNB4. Nat Genet 1996; 12 : 421–3. [Google Scholar]
  8. Toure A, Morin L, Pineau C, et al. Tat1, a novel sulfate transporter specifically expressed in human male germ cells and potentially linked to rhogtpase signaling. J Biol Chem 2001; 276 : 20309–15. [Google Scholar]
  9. Lohi H, Kujala M, Makela S, et al. Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9. J Biol Chem 2002; 277 : 14246–54. [Google Scholar]
  10. Yanagimachi R. Fertility of mammalian spermatozoa: its development and relativity. Zygote 1994; 2 : 371–2. [Google Scholar]
  11. Toure A, Lhuillier P, Gossen JA, et al. The Testis Anion Transporter 1 (Slc26a8) is required for sperm terminal differentiation and male fertility in the mouse. Hum Mol Genet 2007; 16 : 1783–93. [Google Scholar]
  12. Visconti PE, Westbrook VA, Chertihin O, et al. Novel signaling pathways involved in sperm acquisition of fertilizing capacity. J Reprod Immunol 2002; 53 : 133–50. [Google Scholar]
  13. Forlino A, Piazza R, Tiveron C, et al. A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype. Hum Mol Genet 2005; 14 : 859–71. [Google Scholar]
  14. Everett LA, Belyantseva IA, Noben-Trauth K, et al. Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 2001; 10 : 153–61. [Google Scholar]
  15. Wang Z, Wang T, Petrovic S, et al. Renal and intestinal transport defects in Slc26a6-null mice. Am J Physiol Cell Physiol 2005; 288 : C957–65. [Google Scholar]
  16. Cheatham MA, Huynh KH, Gao J, et al. Cochlear function in Prestin knockout mice. J Physiol 2004; 560 : 821–30. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.