Free Access
Med Sci (Paris)
Volume 24, Number 2, Février 2008
Page(s) 185 - 190
Section M/S revues
Published online 15 February 2008
  1. Back T, Hemmen T, Schuler OG. Lesion evolution in cerebral ischemia. J Neurol 2004; 251 : 388–97. [Google Scholar]
  2. Pulsinelli WA. Selective neuronal vulnerability: morphological and molecular characteristics. Prog Brain Res 1985; 63 : 29–37. [Google Scholar]
  3. Calabresi P, Centonze D, Pisani A, et al. Synaptic plasticity in the ischaemic brain. Lancet Neurol 2003; 2 : 622–9. [Google Scholar]
  4. Rosenberg GA. Ischemic brain edema. Prog Cardiovasc Dis 1999; 42 : 209–16. [Google Scholar]
  5. Fujioka M, Taoka T, Hiramatsu KI, et al. Delayed ischemic hyperintensity on T1-weighted MRI in the caudoputamen and cerebral cortex of humans after spectacular shrinking deficit. Stroke 1999; 30 : 1038–42. [Google Scholar]
  6. Petito CK, Feldmann E, Pulsinelli WA, Plum F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 1987; 37 : 1281–6. [Google Scholar]
  7. Kirino, T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 1982; 239 : 57–69. [Google Scholar]
  8. Galvez T, Pin JP. How do G-protein-coupled receptors work ? The case of metabotropic glutamate and GABA receptors. Med Sci (Paris) 2003; 19 : 559–65. [Google Scholar]
  9. MacDonald JF, Jackson MF, Beazely MA. Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Crit Rev Neurobiol 2006; 18 : 71–84. [Google Scholar]
  10. Spedding M, Lestage P. Synaptic plasticity and neuropathology: new approaches in drug discovery. Med Sci (Paris) 2005; 21 : 104–9. [Google Scholar]
  11. Collins RC, Dobkin BH, Choi DW. Selective vulnerability of the brain: new insights into the pathophysiology of stroke. Ann Intern Med 1989; 110 : 992–1000. [Google Scholar]
  12. Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 2000; 403 : 316–21. [Google Scholar]
  13. Choi DW. Excitotoxic cell death. J Neurobiol 1992; 23 : 1261–76. [Google Scholar]
  14. Mitani A, Andou Y, Kataoka K. Selective vulnerability of hippocampal CA1 neurons cannot be explained in terms of an increase in glutamate concentration during ischemia in the gerbil: brain microdialysis study. Neuroscience 1992; 48 : 307–13. [Google Scholar]
  15. Gee CE, Benquet P, Raineteau O, et al. NMDA receptors and the differential ischemic vulnerability of hippocampal neurons. Eur J Neurosci 2006; 23 : 2595–603. [Google Scholar]
  16. Crepel V, Hammond C, Chinestra P, et al. A selective LTP of NMDA receptor-mediated currents induced by anoxia in CA1 hippocampal neurons. J Neurophysiol 1993; 70 : 2045–55. [Google Scholar]
  17. Crepel V, Hammond C, Krnjevic K, et al. Anoxia-induced LTP of isolated NMDA receptor-mediated synaptic responses. J Neurophysiol 1993; 69 : 1774–8. [Google Scholar]
  18. Crepel V, Epsztein J, Ben-Ari Y. Ischemia induces short- and long-term remodeling of synaptic activity in the hippocampus. J Cell Mol Med 2003; 7 : 401–7. [Google Scholar]
  19. Calabresi P, Saulle E, Centonze D, et al. Post-ischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability. Brain 2002; 125 : 844–60. [Google Scholar]
  20. Picconi B, Tortiglione A, Barone I, et al. NR2B subunit exerts a critical role in postischemic synaptic plasticity. Stroke 2006; 37 : 1895–901. [Google Scholar]
  21. Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 2001; 11 : 327–35. [Google Scholar]
  22. Quintana P, Alberi S, Hakkoum D, Muller D. Glutamate receptor changes associated with transient anoxia/hypoglycaemia in hippocampal slice cultures. Eur J Neurosci 2006; 23 : 975–83. [Google Scholar]
  23. Kovalenko T, Osadchenko I, Nikonenko A, et al. Ischemia-induced modifications in hippocampal CA1 stratum radiatum excitatory synapses. Hippocampus 2006; 16 : 814–25. [Google Scholar]
  24. Jourdain P, Nikonenko I, Alberi S, Muller D. Remodeling of hippocampal synaptic networks by a brief anoxia-hypoglycemia. J Neurosci 2002; 22 : 3108–16. [Google Scholar]
  25. Zhang S, Boyd J, Delaney K, Murphy TH. Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. J Neurosci 2005; 25: 5333–8. [Google Scholar]
  26. Neigh GN, Glasper ER, Kofler J, et al. Cardiac arrest with cardiopulmonary resuscitation reduces dendritic spine density in CA1 pyramidal cells and selectively alters acquisition of spatial memory. Eur J Neurosci 2004; 20 : 1865–72. [Google Scholar]
  27. Tanaka H, Grooms SY, Bennett MV, Zukin RS. The AMPAR subunit GluR2: still front and center-stage. Brain Res 2000; 886 : 190–207. [Google Scholar]
  28. Noh KM, Yokota H, Mashiko T, et al. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci USA 2005; 102 : 12230–5. [Google Scholar]
  29. Salter MW, Kalia LV. Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 2004; 5 : 317–28. [Google Scholar]
  30. Benquet P, Gee CE, Gerber U. Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J Neurosci 2002; 22 : 9679–86. [Google Scholar]
  31. Hashimoto R, Fujimaki K, Jeong MR, et al. Lithium-induced inhibition of Src tyrosine kinase in rat cerebral cortical neurons: a role in neuroprotection against N-methyl-D-aspartate receptor-mediated excitotoxicity. FEBS Lett 2003; 538 : 145–8. [Google Scholar]
  32. Ardizzone TD, Zhan X, Ander BP, Sharp FR. SRC kinase inhibition improves acute outcomes after experimental intracerebral hemorrhage. Stroke 2007; 38 : 1621–5. [Google Scholar]
  33. Paul R, Zhang ZG, Eliceiri BP, et al. Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat Med 2001; 7 : 222–7. [Google Scholar]
  34. Grishin AA, Gee CE, Gerber U, Benquet P. Differential calcium-dependent modulation of NMDA currents in CA1 and CA3 hippocampal pyramidal cells. J Neurosci 2004; 24 : 350–5. [Google Scholar]
  35. Harney SC, Rowan M, Anwyl R. Long-term depression of NMDA receptor-mediated synaptic transmission is dependent on activation of metabotropic glutamate receptors and is altered to long-term potentiation by low intracellular calcium buffering. J Neurosci 2006; 26 : 1128–32. [Google Scholar]
  36. Grishin AA, Benquet P, Gerber U. Muscarinic receptor stimulation reduces NMDA responses in CA3 hippocampal pyramidal cells via Ca2+-dependent activation of tyrosine phosphatase. Neuropharmacology 2005; 49 : 328–37. [Google Scholar]
  37. Birmingham, K. Future of neuroprotective drugs in doubt. Nat Med 2002; 8 : 5. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.