Accès gratuit
Numéro
Med Sci (Paris)
Volume 24, Numéro 2, Février 2008
Page(s) 185 - 190
Section M/S revues
DOI https://doi.org/10.1051/medsci/2008242185
Publié en ligne 15 février 2008
  1. Back T, Hemmen T, Schuler OG. Lesion evolution in cerebral ischemia. J Neurol 2004; 251 : 388–97. [Google Scholar]
  2. Pulsinelli WA. Selective neuronal vulnerability: morphological and molecular characteristics. Prog Brain Res 1985; 63 : 29–37. [Google Scholar]
  3. Calabresi P, Centonze D, Pisani A, et al. Synaptic plasticity in the ischaemic brain. Lancet Neurol 2003; 2 : 622–9. [Google Scholar]
  4. Rosenberg GA. Ischemic brain edema. Prog Cardiovasc Dis 1999; 42 : 209–16. [Google Scholar]
  5. Fujioka M, Taoka T, Hiramatsu KI, et al. Delayed ischemic hyperintensity on T1-weighted MRI in the caudoputamen and cerebral cortex of humans after spectacular shrinking deficit. Stroke 1999; 30 : 1038–42. [Google Scholar]
  6. Petito CK, Feldmann E, Pulsinelli WA, Plum F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 1987; 37 : 1281–6. [Google Scholar]
  7. Kirino, T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 1982; 239 : 57–69. [Google Scholar]
  8. Galvez T, Pin JP. How do G-protein-coupled receptors work ? The case of metabotropic glutamate and GABA receptors. Med Sci (Paris) 2003; 19 : 559–65. [Google Scholar]
  9. MacDonald JF, Jackson MF, Beazely MA. Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Crit Rev Neurobiol 2006; 18 : 71–84. [Google Scholar]
  10. Spedding M, Lestage P. Synaptic plasticity and neuropathology: new approaches in drug discovery. Med Sci (Paris) 2005; 21 : 104–9. [Google Scholar]
  11. Collins RC, Dobkin BH, Choi DW. Selective vulnerability of the brain: new insights into the pathophysiology of stroke. Ann Intern Med 1989; 110 : 992–1000. [Google Scholar]
  12. Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 2000; 403 : 316–21. [Google Scholar]
  13. Choi DW. Excitotoxic cell death. J Neurobiol 1992; 23 : 1261–76. [Google Scholar]
  14. Mitani A, Andou Y, Kataoka K. Selective vulnerability of hippocampal CA1 neurons cannot be explained in terms of an increase in glutamate concentration during ischemia in the gerbil: brain microdialysis study. Neuroscience 1992; 48 : 307–13. [Google Scholar]
  15. Gee CE, Benquet P, Raineteau O, et al. NMDA receptors and the differential ischemic vulnerability of hippocampal neurons. Eur J Neurosci 2006; 23 : 2595–603. [Google Scholar]
  16. Crepel V, Hammond C, Chinestra P, et al. A selective LTP of NMDA receptor-mediated currents induced by anoxia in CA1 hippocampal neurons. J Neurophysiol 1993; 70 : 2045–55. [Google Scholar]
  17. Crepel V, Hammond C, Krnjevic K, et al. Anoxia-induced LTP of isolated NMDA receptor-mediated synaptic responses. J Neurophysiol 1993; 69 : 1774–8. [Google Scholar]
  18. Crepel V, Epsztein J, Ben-Ari Y. Ischemia induces short- and long-term remodeling of synaptic activity in the hippocampus. J Cell Mol Med 2003; 7 : 401–7. [Google Scholar]
  19. Calabresi P, Saulle E, Centonze D, et al. Post-ischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability. Brain 2002; 125 : 844–60. [Google Scholar]
  20. Picconi B, Tortiglione A, Barone I, et al. NR2B subunit exerts a critical role in postischemic synaptic plasticity. Stroke 2006; 37 : 1895–901. [Google Scholar]
  21. Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 2001; 11 : 327–35. [Google Scholar]
  22. Quintana P, Alberi S, Hakkoum D, Muller D. Glutamate receptor changes associated with transient anoxia/hypoglycaemia in hippocampal slice cultures. Eur J Neurosci 2006; 23 : 975–83. [Google Scholar]
  23. Kovalenko T, Osadchenko I, Nikonenko A, et al. Ischemia-induced modifications in hippocampal CA1 stratum radiatum excitatory synapses. Hippocampus 2006; 16 : 814–25. [Google Scholar]
  24. Jourdain P, Nikonenko I, Alberi S, Muller D. Remodeling of hippocampal synaptic networks by a brief anoxia-hypoglycemia. J Neurosci 2002; 22 : 3108–16. [Google Scholar]
  25. Zhang S, Boyd J, Delaney K, Murphy TH. Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. J Neurosci 2005; 25: 5333–8. [Google Scholar]
  26. Neigh GN, Glasper ER, Kofler J, et al. Cardiac arrest with cardiopulmonary resuscitation reduces dendritic spine density in CA1 pyramidal cells and selectively alters acquisition of spatial memory. Eur J Neurosci 2004; 20 : 1865–72. [Google Scholar]
  27. Tanaka H, Grooms SY, Bennett MV, Zukin RS. The AMPAR subunit GluR2: still front and center-stage. Brain Res 2000; 886 : 190–207. [Google Scholar]
  28. Noh KM, Yokota H, Mashiko T, et al. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci USA 2005; 102 : 12230–5. [Google Scholar]
  29. Salter MW, Kalia LV. Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 2004; 5 : 317–28. [Google Scholar]
  30. Benquet P, Gee CE, Gerber U. Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J Neurosci 2002; 22 : 9679–86. [Google Scholar]
  31. Hashimoto R, Fujimaki K, Jeong MR, et al. Lithium-induced inhibition of Src tyrosine kinase in rat cerebral cortical neurons: a role in neuroprotection against N-methyl-D-aspartate receptor-mediated excitotoxicity. FEBS Lett 2003; 538 : 145–8. [Google Scholar]
  32. Ardizzone TD, Zhan X, Ander BP, Sharp FR. SRC kinase inhibition improves acute outcomes after experimental intracerebral hemorrhage. Stroke 2007; 38 : 1621–5. [Google Scholar]
  33. Paul R, Zhang ZG, Eliceiri BP, et al. Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat Med 2001; 7 : 222–7. [Google Scholar]
  34. Grishin AA, Gee CE, Gerber U, Benquet P. Differential calcium-dependent modulation of NMDA currents in CA1 and CA3 hippocampal pyramidal cells. J Neurosci 2004; 24 : 350–5. [Google Scholar]
  35. Harney SC, Rowan M, Anwyl R. Long-term depression of NMDA receptor-mediated synaptic transmission is dependent on activation of metabotropic glutamate receptors and is altered to long-term potentiation by low intracellular calcium buffering. J Neurosci 2006; 26 : 1128–32. [Google Scholar]
  36. Grishin AA, Benquet P, Gerber U. Muscarinic receptor stimulation reduces NMDA responses in CA3 hippocampal pyramidal cells via Ca2+-dependent activation of tyrosine phosphatase. Neuropharmacology 2005; 49 : 328–37. [Google Scholar]
  37. Birmingham, K. Future of neuroprotective drugs in doubt. Nat Med 2002; 8 : 5. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.