Free Access
Issue
Med Sci (Paris)
Volume 24, Number 1, Janvier 2008
Page(s) 49 - 55
Section M/S revues
DOI https://doi.org/10.1051/medsci/200824149
Published online 15 January 2008
  1. Balvay L, Lopez Lastra M, Sargueil B, et al. Translational control of retroviruses. Nat Rev Microbiol 2007; 5 : 128–40. [Google Scholar]
  2. Muriaux D, Mirro J, Harvin D, Rein A. RNA is a structural element in retrovirus particles. Proc Natl Acad Sci USA 2001; 98 : 5246–51. [Google Scholar]
  3. Gatignol A, Dubuisson J, Wainberg MA, et al. New pandemics : HIV and AIDS, HCV and chronic hepatitis, influenza virus and flu. Retrovirology 2007; 4 : 8. [Google Scholar]
  4. De Rocquigny H, Petitjean P, Tanchou V, et al. The zinc fingers of HIV nucleocapsid protein NCp7 direct interactions with the viral regulatory protein Vpr. J Biol Chem 1997; 272 : 30753–9. [Google Scholar]
  5. Huseby D, Barklis RL, Alfadhli A, Barklis E. Assembly of human immunodeficiency virus precursor gag proteins. J Biol Chem 2005; 280 : 17664–70. [Google Scholar]
  6. Cimarelli A, Sandin S, Höglund S, Luban J. Basic residues in human immunodeficiency virus type 1 nucleocapsid promote virion assembly via interaction with RNA. J Virol 2000; 74 : 3046–57. [Google Scholar]
  7. Ottmann M, Gabus C, Darlix JL. The central globular domain of the nucleocapsid protein of human immunodeficiency virus type 1 is critical for virion structure and infectivity. J Virol 1995; 69 : 1778–84. [Google Scholar]
  8. Ono A, Ablan SD, Lockett SJ, et al. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci USA 2004; 101 : 14889–94. [Google Scholar]
  9. Saad JS, Miller J, Tai J, et al. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci USA 2006; 103 : 11364–9. [Google Scholar]
  10. Saad JS, Loeliger E, Luncsford P, et al. Point mutations in the HIV-1 matrix protein turn off the myristyl switch. J Mol Biol 2007; 366 : 574–85. [Google Scholar]
  11. Spearman P, Horton R, Ratner L, Kuli-Zade I. Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism. J Virol 1997; 71 : 6582–92. [Google Scholar]
  12. Demirov DG, Freed EO. Retrovirus budding. Virus Res 2004; 106 : 87–102. [Google Scholar]
  13. Goff SP. Host factors exploited by retroviruses. Nat Rev Microbiol 2007; 5 : 253–63. [Google Scholar]
  14. Bieniasz PD. Late budding domains and host proteins in enveloped virus release. Virology 2006; 344 : 55–63. [Google Scholar]
  15. Russell MR, Nickerson DP, Odorizzi G. Molecular mechanisms of late endosome morphology, identity and sorting. Curr Opin Cell Biol 2006; 18 : 422–8. [Google Scholar]
  16. Février B, Raposo G. Exosomes : endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 2004; 16 : 415–21. [Google Scholar]
  17. Hurley JH, Emr SD. The ESCRT complexes : structure and mechanism of a membrane-trafficking network. Annu Rev Bioph Biomol Struct 2006; 35 : 277–98. [Google Scholar]
  18. Gottwein E, Jäger S, Habermann A, Kräusslich HG. Cumulative mutations of ubiquitin acceptor sites in human immunodeficiency virus type 1 gag cause a late budding defect. J Virol 2006; 80 : 6267–75. [Google Scholar]
  19. Okumura A, Lu G, Pitha-Rowe I, Pitha PM. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc Natl Acad Sci USA 2006; 103 : 1440–5. [Google Scholar]
  20. Dong X, Li H, Derdowski A, et al. AP-3 directs the intracellular trafficking of HIV-1 Gag and plays a key role in particle assembly. Cell 2005; 120 : 663–74. [Google Scholar]
  21. Darlix JL, Lapadat-Tapolsky M, de Rocquigny H, Roques BP. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J Mol Biol 1995; 254 : 523–37. [Google Scholar]
  22. Fackler OT, Kräusslich HG. Interactions of human retroviruses with the host cell cytoskeleton. Curr Opin Microbiol 2006; 9 : 409–15. [Google Scholar]
  23. Byland R, Vance PJ, Hoxie JA, Marsh M. A conserved dileucine motif mediates clathrin and AP-2-dependent endocytosis of the HIV-1 envelope protein. Mol Biol Cell 2007; 18 : 414–25. [Google Scholar]
  24. Blot G, Janvier K, Le Panse S, et al. Targeting of the human immunodeficiency virus type 1 envelope to the trans-Golgi network through binding to TIP47 is required for env incorporation into virions and infectivity. J Virol 2003; 77 : 6931–45. [Google Scholar]
  25. Owens RJ, Dubay JW, Hunter E, Compans RW. Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells. Proc Natl Acad Sci USA 1991; 88 : 3987–91. [Google Scholar]
  26. Murakami T, Freed EO. Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and alpha-helix 2 of the gp41 cytoplasmic tail. J Virol 2000; 74 : 3548–54. [Google Scholar]
  27. Lopez-Vergès S, Camus G, Blot G, et al. Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc Natl Acad Sci USA 2006; 103 : 14947–52. [Google Scholar]
  28. Orenstein JM, Meltzer MS, Phipps T, Gendelman HE. Cytoplasmic assembly and accumulation of human immunodeficiency virus types 1 and 2 in recombinant human colony-stimulating factor-1-treated human monocytes : an ultrastructural study. J Virol 1988; 62 : 2578–86. [Google Scholar]
  29. Raposo G, Moore M, Innes D, et al. Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic 2002; 3 : 718–29. [Google Scholar]
  30. Jouvenet N, Neil SJ, Bess C, et al. Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol 2006; 4 : e435. [Google Scholar]
  31. Welsch S, Keppler OT, Habermann A, et al. HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog 2007; 3 : e36. [Google Scholar]
  32. Deneka M, Pelchen-Matthews A, Byland R et al. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol 2007; 177 : 329–41. [Google Scholar]
  33. Derdowski A, Ding L, Spearman P. A novel fluorescence resonance energy transfer assay demonstrates that the human immunodeficiency virus type 1 Pr55Gag I domain mediates Gag-Gag interactions. J Virol 2004; 78 : 1230–42. [Google Scholar]
  34. Brügger B, Glass B, Haberkant P, et al. The HIV lipidome : a raft with an unusual composition. Proc Natl Acad Sci USA 2006; 103 : 2641–6. [Google Scholar]
  35. Nydegger S, Khurana S, Krementsov DN, et al. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J Cell Biol 2006; 173 : 795–807. [Google Scholar]
  36. Pelchen-Matthews A, Kramer B, Marsh M. Infectious HIV-1 assembles in late endosomes in primary macrophages. J Cell Biol 2003; 162 : 443–55. [Google Scholar]
  37. Grigorov B, Arcanger F, Roingeard P, et al. Assembly of infectious HIV-1 in human epithelial and T-lymphoblastic cell lines. J Mol Biol 2006; 359 : 848–62. [Google Scholar]
  38. Bosch B, Blanco J, Pauls E, et al. Inhibition of coreceptor-independent cell-to-cell human immunodeficiency virus type 1 transmission by a CD4-immunoglobulin G2 fusion protein. Antimicrob Agents Chemother 2005; 49 : 4296–304. [Google Scholar]
  39. Jolly C, Kashefi K, Hollinshead M, Sattentau QJ. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med 2004; 199 : 283–93. [Google Scholar]
  40. Sol-Foulon N, Sourisseau M, Porrot F, et al. ZAP-70 kinase regulates HIV cell-to-cell spread and virological synapse formation. EMBO J 2007; 26 : 516–26. [Google Scholar]
  41. Sherer NM, Lehmann MJ, Jimenez-Soto LF, et al. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 2007; 9 : 310–5. [Google Scholar]
  42. Delamarre L, Rosenberg AR, Pique C, et al. A novel human T-leukemia virus type 1 cell-to-cell transmission assay permits definition of SU glycoprotein amino acids important for infectivity. J Virol 1997; 71 : 259–66. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.