Accès gratuit
Numéro
Med Sci (Paris)
Volume 24, Numéro 1, Janvier 2008
Page(s) 49 - 55
Section M/S revues
DOI https://doi.org/10.1051/medsci/200824149
Publié en ligne 15 janvier 2008
  1. Balvay L, Lopez Lastra M, Sargueil B, et al. Translational control of retroviruses. Nat Rev Microbiol 2007; 5 : 128–40. [Google Scholar]
  2. Muriaux D, Mirro J, Harvin D, Rein A. RNA is a structural element in retrovirus particles. Proc Natl Acad Sci USA 2001; 98 : 5246–51. [Google Scholar]
  3. Gatignol A, Dubuisson J, Wainberg MA, et al. New pandemics : HIV and AIDS, HCV and chronic hepatitis, influenza virus and flu. Retrovirology 2007; 4 : 8. [Google Scholar]
  4. De Rocquigny H, Petitjean P, Tanchou V, et al. The zinc fingers of HIV nucleocapsid protein NCp7 direct interactions with the viral regulatory protein Vpr. J Biol Chem 1997; 272 : 30753–9. [Google Scholar]
  5. Huseby D, Barklis RL, Alfadhli A, Barklis E. Assembly of human immunodeficiency virus precursor gag proteins. J Biol Chem 2005; 280 : 17664–70. [Google Scholar]
  6. Cimarelli A, Sandin S, Höglund S, Luban J. Basic residues in human immunodeficiency virus type 1 nucleocapsid promote virion assembly via interaction with RNA. J Virol 2000; 74 : 3046–57. [Google Scholar]
  7. Ottmann M, Gabus C, Darlix JL. The central globular domain of the nucleocapsid protein of human immunodeficiency virus type 1 is critical for virion structure and infectivity. J Virol 1995; 69 : 1778–84. [Google Scholar]
  8. Ono A, Ablan SD, Lockett SJ, et al. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci USA 2004; 101 : 14889–94. [Google Scholar]
  9. Saad JS, Miller J, Tai J, et al. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci USA 2006; 103 : 11364–9. [Google Scholar]
  10. Saad JS, Loeliger E, Luncsford P, et al. Point mutations in the HIV-1 matrix protein turn off the myristyl switch. J Mol Biol 2007; 366 : 574–85. [Google Scholar]
  11. Spearman P, Horton R, Ratner L, Kuli-Zade I. Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism. J Virol 1997; 71 : 6582–92. [Google Scholar]
  12. Demirov DG, Freed EO. Retrovirus budding. Virus Res 2004; 106 : 87–102. [Google Scholar]
  13. Goff SP. Host factors exploited by retroviruses. Nat Rev Microbiol 2007; 5 : 253–63. [Google Scholar]
  14. Bieniasz PD. Late budding domains and host proteins in enveloped virus release. Virology 2006; 344 : 55–63. [Google Scholar]
  15. Russell MR, Nickerson DP, Odorizzi G. Molecular mechanisms of late endosome morphology, identity and sorting. Curr Opin Cell Biol 2006; 18 : 422–8. [Google Scholar]
  16. Février B, Raposo G. Exosomes : endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 2004; 16 : 415–21. [Google Scholar]
  17. Hurley JH, Emr SD. The ESCRT complexes : structure and mechanism of a membrane-trafficking network. Annu Rev Bioph Biomol Struct 2006; 35 : 277–98. [Google Scholar]
  18. Gottwein E, Jäger S, Habermann A, Kräusslich HG. Cumulative mutations of ubiquitin acceptor sites in human immunodeficiency virus type 1 gag cause a late budding defect. J Virol 2006; 80 : 6267–75. [Google Scholar]
  19. Okumura A, Lu G, Pitha-Rowe I, Pitha PM. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc Natl Acad Sci USA 2006; 103 : 1440–5. [Google Scholar]
  20. Dong X, Li H, Derdowski A, et al. AP-3 directs the intracellular trafficking of HIV-1 Gag and plays a key role in particle assembly. Cell 2005; 120 : 663–74. [Google Scholar]
  21. Darlix JL, Lapadat-Tapolsky M, de Rocquigny H, Roques BP. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J Mol Biol 1995; 254 : 523–37. [Google Scholar]
  22. Fackler OT, Kräusslich HG. Interactions of human retroviruses with the host cell cytoskeleton. Curr Opin Microbiol 2006; 9 : 409–15. [Google Scholar]
  23. Byland R, Vance PJ, Hoxie JA, Marsh M. A conserved dileucine motif mediates clathrin and AP-2-dependent endocytosis of the HIV-1 envelope protein. Mol Biol Cell 2007; 18 : 414–25. [Google Scholar]
  24. Blot G, Janvier K, Le Panse S, et al. Targeting of the human immunodeficiency virus type 1 envelope to the trans-Golgi network through binding to TIP47 is required for env incorporation into virions and infectivity. J Virol 2003; 77 : 6931–45. [Google Scholar]
  25. Owens RJ, Dubay JW, Hunter E, Compans RW. Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells. Proc Natl Acad Sci USA 1991; 88 : 3987–91. [Google Scholar]
  26. Murakami T, Freed EO. Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and alpha-helix 2 of the gp41 cytoplasmic tail. J Virol 2000; 74 : 3548–54. [Google Scholar]
  27. Lopez-Vergès S, Camus G, Blot G, et al. Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc Natl Acad Sci USA 2006; 103 : 14947–52. [Google Scholar]
  28. Orenstein JM, Meltzer MS, Phipps T, Gendelman HE. Cytoplasmic assembly and accumulation of human immunodeficiency virus types 1 and 2 in recombinant human colony-stimulating factor-1-treated human monocytes : an ultrastructural study. J Virol 1988; 62 : 2578–86. [Google Scholar]
  29. Raposo G, Moore M, Innes D, et al. Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic 2002; 3 : 718–29. [Google Scholar]
  30. Jouvenet N, Neil SJ, Bess C, et al. Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol 2006; 4 : e435. [Google Scholar]
  31. Welsch S, Keppler OT, Habermann A, et al. HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog 2007; 3 : e36. [Google Scholar]
  32. Deneka M, Pelchen-Matthews A, Byland R et al. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol 2007; 177 : 329–41. [Google Scholar]
  33. Derdowski A, Ding L, Spearman P. A novel fluorescence resonance energy transfer assay demonstrates that the human immunodeficiency virus type 1 Pr55Gag I domain mediates Gag-Gag interactions. J Virol 2004; 78 : 1230–42. [Google Scholar]
  34. Brügger B, Glass B, Haberkant P, et al. The HIV lipidome : a raft with an unusual composition. Proc Natl Acad Sci USA 2006; 103 : 2641–6. [Google Scholar]
  35. Nydegger S, Khurana S, Krementsov DN, et al. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J Cell Biol 2006; 173 : 795–807. [Google Scholar]
  36. Pelchen-Matthews A, Kramer B, Marsh M. Infectious HIV-1 assembles in late endosomes in primary macrophages. J Cell Biol 2003; 162 : 443–55. [Google Scholar]
  37. Grigorov B, Arcanger F, Roingeard P, et al. Assembly of infectious HIV-1 in human epithelial and T-lymphoblastic cell lines. J Mol Biol 2006; 359 : 848–62. [Google Scholar]
  38. Bosch B, Blanco J, Pauls E, et al. Inhibition of coreceptor-independent cell-to-cell human immunodeficiency virus type 1 transmission by a CD4-immunoglobulin G2 fusion protein. Antimicrob Agents Chemother 2005; 49 : 4296–304. [Google Scholar]
  39. Jolly C, Kashefi K, Hollinshead M, Sattentau QJ. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med 2004; 199 : 283–93. [Google Scholar]
  40. Sol-Foulon N, Sourisseau M, Porrot F, et al. ZAP-70 kinase regulates HIV cell-to-cell spread and virological synapse formation. EMBO J 2007; 26 : 516–26. [Google Scholar]
  41. Sherer NM, Lehmann MJ, Jimenez-Soto LF, et al. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 2007; 9 : 310–5. [Google Scholar]
  42. Delamarre L, Rosenberg AR, Pique C, et al. A novel human T-leukemia virus type 1 cell-to-cell transmission assay permits definition of SU glycoprotein amino acids important for infectivity. J Virol 1997; 71 : 259–66. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.