Free Access
Issue
Med Sci (Paris)
Volume 23, Number 10, Octobre 2007
Page(s) 850 - 856
Section M/S revues
DOI https://doi.org/10.1051/medsci/20072310850
Published online 15 October 2007
  1. Alberts A, Johnson A, Lewis J, et al. Molecular biology of the cell, 4th ed. New York : Garland Science, 2002. [Google Scholar]
  2. Meyer S, Temme C, Wahle E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 2004; 39 : 197–216. [Google Scholar]
  3. Garneau NL, Wilusz J, Wilusz CJ. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 2007; 8 : 113–26. [Google Scholar]
  4. Brown CE, Sachs AB. Poly(A) tail length control in Saccharomyces cerevisiae occurs by message-specific deadenylation. Mol Cell Biol 1998; 18 : 6548–59. [Google Scholar]
  5. Yamashita A, Chang TC, Yamashita Y, et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 2005; 12 : 1054–63. [Google Scholar]
  6. Daugeron MC, Mauxion F, Seraphin B. The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation. Nucleic Acids Res 2001; 29 : 2448–55. [Google Scholar]
  7. Finoux AL, Seraphin B. In vivo targeting of the yeast Pop2 deadenylase subunit to reporter transcripts induces their rapid degradation and generates new decay intermediates. J Biol Chem 2006; 281 : 25940–7. [Google Scholar]
  8. Tucker M, Staples RR, Valencia-Sanchez MA, et al. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J 2002; 21 : 1427–36. [Google Scholar]
  9. Bianchin C, Mauxion F, Sentis S, et al. Conservation of the deadenylase activity of proteins of the Caf1 family in human. RNA 2005; 11 : 487–94. [Google Scholar]
  10. Cougot N, van Dijk E, Babajko S, Seraphin B. Cap-tabolism. Trends Biochem Sci 2004; 29 : 436–44. [Google Scholar]
  11. Simon E, Camier S, Seraphin B. New insights into the control of mRNA decapping. Trends Biochem Sci 2006; 31 : 241–3. [Google Scholar]
  12. Mitchell P, Petfalski E, Shevchenko A, et al. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3’->5’ exoribonucleases. Cell 1997; 91 : 457–66. [Google Scholar]
  13. Buttner K, Wenig K, Hopfner KP. The exosome: a macromolecular cage for controlled RNA degradation. Mol Microbiol 2006; 61 : 1372–9. [Google Scholar]
  14. Dziembowski A, Lorentzen E, Conti E, Seraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 2007; 14 : 15–22. [Google Scholar]
  15. Liu H, Rodgers ND, Jiao X, Kiledjian M. The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. EMBO J 2002; 21 : 4699–708. [Google Scholar]
  16. Van Dijk E, Le Hir H, Seraphin B. DcpS can act in the 5’-3’ mRNA decay pathway in addition to the 3’-5’ pathway. Proc Natl Acad Sci USA 2003; 100 : 12081–6. [Google Scholar]
  17. Cougot N, Babajko S, Seraphin B. Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 2004; 165 : 31–40. [Google Scholar]
  18. Eulalio A, Behm-Ansmant I, Izaurralde E. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 2007; 8 : 9–22. [Google Scholar]
  19. Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell 2007; 25 : 635–46. [Google Scholar]
  20. Olesen JR, Libri D, Jensen TH. A link between transcription and mRNP quality in Saccharomyces cerevisiae. RNA Biol 2005; 2 : 45–8. [Google Scholar]
  21. Kadaba S, Krueger A, Trice T, et al. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 2004; 18 : 1227–40. [Google Scholar]
  22. Wyers F, Rougemaille M, Badis G, et al. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 2005; 121 : 725–37. [Google Scholar]
  23. LaCava J, Houseley J, Saveanu C, et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 2005; 121 : 713–24. [Google Scholar]
  24. Amrani N, Sachs MS, Jacobson A. Early nonsense: mRNA decay solves a translational problem. Nat Rev Mol Cell Biol 2006; 7 : 415–25. [Google Scholar]
  25. Le Hir H, Moore MJ, Maquat LE. Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev 2000; 14 : 1098–108. [Google Scholar]
  26. Vasudevan S, Peltz SW, Wilusz CJ. Non-stop decay: a new mRNA surveillance pathway. Bioessays 2002; 24 : 785–8. [Google Scholar]
  27. Doma MK, Parker R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 2006; 440 : 561–4. [Google Scholar]
  28. Brengues M, Teixeira D, Parker R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 2005; 310 : 486–9. [Google Scholar]
  29. Cheadle C, Fan J, Cho-Chung YS, et al. Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability. BMC Genomics 2005; 6 : 75. [Google Scholar]
  30. Wickens M, Bernstein DS, Kimble J, Parker R. A PUF family portrait: 3’UTR regulation as a way of life. Trends Genet 2002; 18 : 150–7. [Google Scholar]
  31. Goldstrohm AC, Hook BA, Seay DJ, Wickens M. PUF proteins bind Pop2p to regulate messenger RNAs. Nat Struct Mol Biol 2006; 13 : 533–9. [Google Scholar]
  32. Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles ? Nucleic Acids Res 2005; 33 : 7138–50. [Google Scholar]
  33. Lykke-Andersen J, Wagner E. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 2005; 19 : 351–61. [Google Scholar]
  34. Peng SS, Chen CY, Xu N, Shyu AB. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J 1998; 17 : 3461–70. [Google Scholar]
  35. Tang G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 2005; 30 : 106–14. [Google Scholar]
  36. Parker JS, Barford D. Argonaute: a scaffold for the function of short regulatory RNAs. Trends Biochem Sci 2006; 31 : 622–30. [Google Scholar]
  37. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 2007; 8 : 23–36. [Google Scholar]
  38. Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev 2001; 14 : 778–809. [Google Scholar]
  39. Harel-Bellan A. Prix Nobel de Médecine à Andrew Z. Fire et Craig c. Mello : silence, on désactive les gènes. Med Sci (Paris) 2006; 22 : 993–4. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.