Accès gratuit
Numéro |
Med Sci (Paris)
Volume 23, Numéro 10, Octobre 2007
|
|
---|---|---|
Page(s) | 850 - 856 | |
Section | M/S revues | |
DOI | https://doi.org/10.1051/medsci/20072310850 | |
Publié en ligne | 15 octobre 2007 |
- Alberts A, Johnson A, Lewis J, et al. Molecular biology of the cell, 4th ed. New York : Garland Science, 2002. [Google Scholar]
- Meyer S, Temme C, Wahle E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 2004; 39 : 197–216. [Google Scholar]
- Garneau NL, Wilusz J, Wilusz CJ. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 2007; 8 : 113–26. [Google Scholar]
- Brown CE, Sachs AB. Poly(A) tail length control in Saccharomyces cerevisiae occurs by message-specific deadenylation. Mol Cell Biol 1998; 18 : 6548–59. [Google Scholar]
- Yamashita A, Chang TC, Yamashita Y, et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 2005; 12 : 1054–63. [Google Scholar]
- Daugeron MC, Mauxion F, Seraphin B. The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation. Nucleic Acids Res 2001; 29 : 2448–55. [Google Scholar]
- Finoux AL, Seraphin B. In vivo targeting of the yeast Pop2 deadenylase subunit to reporter transcripts induces their rapid degradation and generates new decay intermediates. J Biol Chem 2006; 281 : 25940–7. [Google Scholar]
- Tucker M, Staples RR, Valencia-Sanchez MA, et al. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J 2002; 21 : 1427–36. [Google Scholar]
- Bianchin C, Mauxion F, Sentis S, et al. Conservation of the deadenylase activity of proteins of the Caf1 family in human. RNA 2005; 11 : 487–94. [Google Scholar]
- Cougot N, van Dijk E, Babajko S, Seraphin B. Cap-tabolism. Trends Biochem Sci 2004; 29 : 436–44. [Google Scholar]
- Simon E, Camier S, Seraphin B. New insights into the control of mRNA decapping. Trends Biochem Sci 2006; 31 : 241–3. [Google Scholar]
- Mitchell P, Petfalski E, Shevchenko A, et al. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3’->5’ exoribonucleases. Cell 1997; 91 : 457–66. [Google Scholar]
- Buttner K, Wenig K, Hopfner KP. The exosome: a macromolecular cage for controlled RNA degradation. Mol Microbiol 2006; 61 : 1372–9. [Google Scholar]
- Dziembowski A, Lorentzen E, Conti E, Seraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 2007; 14 : 15–22. [Google Scholar]
- Liu H, Rodgers ND, Jiao X, Kiledjian M. The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. EMBO J 2002; 21 : 4699–708. [Google Scholar]
- Van Dijk E, Le Hir H, Seraphin B. DcpS can act in the 5’-3’ mRNA decay pathway in addition to the 3’-5’ pathway. Proc Natl Acad Sci USA 2003; 100 : 12081–6. [Google Scholar]
- Cougot N, Babajko S, Seraphin B. Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 2004; 165 : 31–40. [Google Scholar]
- Eulalio A, Behm-Ansmant I, Izaurralde E. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 2007; 8 : 9–22. [Google Scholar]
- Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell 2007; 25 : 635–46. [Google Scholar]
- Olesen JR, Libri D, Jensen TH. A link between transcription and mRNP quality in Saccharomyces cerevisiae. RNA Biol 2005; 2 : 45–8. [Google Scholar]
- Kadaba S, Krueger A, Trice T, et al. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 2004; 18 : 1227–40. [Google Scholar]
- Wyers F, Rougemaille M, Badis G, et al. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 2005; 121 : 725–37. [Google Scholar]
- LaCava J, Houseley J, Saveanu C, et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 2005; 121 : 713–24. [Google Scholar]
- Amrani N, Sachs MS, Jacobson A. Early nonsense: mRNA decay solves a translational problem. Nat Rev Mol Cell Biol 2006; 7 : 415–25. [Google Scholar]
- Le Hir H, Moore MJ, Maquat LE. Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev 2000; 14 : 1098–108. [Google Scholar]
- Vasudevan S, Peltz SW, Wilusz CJ. Non-stop decay: a new mRNA surveillance pathway. Bioessays 2002; 24 : 785–8. [Google Scholar]
- Doma MK, Parker R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 2006; 440 : 561–4. [Google Scholar]
- Brengues M, Teixeira D, Parker R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 2005; 310 : 486–9. [Google Scholar]
- Cheadle C, Fan J, Cho-Chung YS, et al. Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability. BMC Genomics 2005; 6 : 75. [Google Scholar]
- Wickens M, Bernstein DS, Kimble J, Parker R. A PUF family portrait: 3’UTR regulation as a way of life. Trends Genet 2002; 18 : 150–7. [Google Scholar]
- Goldstrohm AC, Hook BA, Seay DJ, Wickens M. PUF proteins bind Pop2p to regulate messenger RNAs. Nat Struct Mol Biol 2006; 13 : 533–9. [Google Scholar]
- Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles ? Nucleic Acids Res 2005; 33 : 7138–50. [Google Scholar]
- Lykke-Andersen J, Wagner E. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 2005; 19 : 351–61. [Google Scholar]
- Peng SS, Chen CY, Xu N, Shyu AB. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J 1998; 17 : 3461–70. [Google Scholar]
- Tang G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 2005; 30 : 106–14. [Google Scholar]
- Parker JS, Barford D. Argonaute: a scaffold for the function of short regulatory RNAs. Trends Biochem Sci 2006; 31 : 622–30. [Google Scholar]
- Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 2007; 8 : 23–36. [Google Scholar]
- Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev 2001; 14 : 778–809. [Google Scholar]
- Harel-Bellan A. Prix Nobel de Médecine à Andrew Z. Fire et Craig c. Mello : silence, on désactive les gènes. Med Sci (Paris) 2006; 22 : 993–4. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.