Free Access
Issue
Med Sci (Paris)
Volume 23, Number 10, Octobre 2007
Page(s) 840 - 844
Section M/S revues
DOI https://doi.org/10.1051/medsci/20072310840
Published online 15 October 2007
  1. Rosen DR. Mutations in Zn/Cu superoxyde dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362 : 59–62. [Google Scholar]
  2. Mattiazzi M, D’Aurelio M, Gajewski CD, et al. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 2002; 277 : 29626–33. [Google Scholar]
  3. Sasaki S, Itawa M. Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis. Neurology 1996; 47 : 535–40. [Google Scholar]
  4. Wiedemann FR, Manfredi G, Mawrin C, et al. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem 2002; 80 : 616–25. [Google Scholar]
  5. Tanzi RE, Bertam L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 2005; 120 : 545–55. [Google Scholar]
  6. Manczak M, Anekonda TS, Henson E, et al. Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 2006; 15 : 1437–49. [Google Scholar]
  7. Abou-Sleiman PM, Muqit MMK, Wood NW. Expanding insight of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 2006; 7 : 207–19. [Google Scholar]
  8. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219 : 979–80. [Google Scholar]
  9. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443 : 787–95. [Google Scholar]
  10. Browne SE, Beal MF. The energetics of Huntington’s disease. Neurochem Res 2004; 29 : 531–46. [Google Scholar]
  11. Milakovic T, Johnson GV. Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin. J Biol Chem 2005; 280 : 30773–82. [Google Scholar]
  12. McGill JK, Beal MF. PGC1-α a new therapeutic target in Huntington disease. Cell 2006; 127 : 465–8. [Google Scholar]
  13. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005; 120 : 483–95. [Google Scholar]
  14. Chen Q, Vazquez EJ, Moghaddas S, et al. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 2003; 278 : 36027–31. [Google Scholar]
  15. Echtay KS, Roussel D, St-Pierre J, et al. Superoxide activates mitochondrial uncoupling proteins. Nature 2002; 415 : 96–9. [Google Scholar]
  16. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 2004; 18 : 357–68. [Google Scholar]
  17. Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98 : 115–24. [Google Scholar]
  18. St-Pierre J, Drori S, Uldry M, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006; 127 : 397–408. [Google Scholar]
  19. Lin J, Wu PH, Tarr PT, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 2004; 119 : 121–35. [Google Scholar]
  20. Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005; 434 : 113–8. [Google Scholar]
  21. Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006; 127 : 1–14. [Google Scholar]
  22. Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir-2 like proteins. Biochem Biophys Res Commun 2000; 273 : 793–8. [Google Scholar]
  23. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004; 305 : 1010–3. [Google Scholar]
  24. Qin W, Yang T, Ho L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 2006; 281 : 21745–54. [Google Scholar]
  25. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303 : 2011–5. [Google Scholar]
  26. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425 : 191–6. [Google Scholar]
  27. Han YS, Bastianetto S, Dumont Y, Quirion R. Specific plasma membrane binding sites for polyphenols, including resveratrol, in the rat brain. J Pharmacol Exp Ther 2006; 318 : 238–45. [Google Scholar]
  28. Wang Q, Yu S, Simonyi A, et al. Resveratrol protects against neurotoxicity induced by kainic acid. Neurochemical Research 2004; 29 : 2105–12. [Google Scholar]
  29. Parker JA, Arango M, Abderrahmane S, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 2005; 37 : 349–50. [Google Scholar]
  30. Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 2005; 280 : 37377–82. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.