Free Access
Issue
Med Sci (Paris)
Volume 23, Number 6-7, Juin-Juillet 2007
Page(s) 568 - 570
Section Nouvelles
DOI https://doi.org/10.1051/medsci/20072367568
Published online 15 June 2007
  1. Moretti A, Caron L, Nakano A, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 2006; 127 : 1151–65. [Google Scholar]
  2. Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 2006; 11 : 723–32. [Google Scholar]
  3. Wu SM, Fujiwara Y, Cibulsky SM, et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 2006; 127 : 1137–50. [Google Scholar]
  4. Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 2005; 6 : 826–35. [Google Scholar]
  5. Meilhac SM, Esner M, Kelly RG, et al. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 2004; 6 : 685–98. [Google Scholar]
  6. Yamashita J, Itoh H, Hirashima M, et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000; 408 : 92–6. [Google Scholar]
  7. Ema M, Faloon P, Zhang WJ, et al. Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes Dev 2003; 17 : 380–93. [Google Scholar]
  8. Esner M, Meilhac SM, Relaix F, et al. Smooth muscle of the dorsal aorta shares a common clonal origin with skeletal muscle of the myotome. Development 2006; 133 : 737–49. [Google Scholar]
  9. Pouget C, Gautier R, Teillet MA, Jaffredo T. Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development 2006; 133 : 1013–22. [Google Scholar]
  10. Iida M, Heike T, Yoshimoto M, et al. Identification of cardiac stem cells with FLK1, CD31, and VE-cadherin expression during embryonic stem cell differentiation. FASEB J 2005; 19 : 371–8. [Google Scholar]
  11. Yamashita JK, Takano M, Hiraoka-Kanie M, et al. Prospective identification of cardiac progenitors by a novel single cell-based cardiomyocyte induction. FASEB J 2005; 19 : 1534–6. [Google Scholar]
  12. Lee RK, Stainier DY, Weinstein BM, Fishman MC. Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field. Development 1994; 120 : 3361–6. [Google Scholar]
  13. Eisenberg CA, Bader D. QCE-6 : a clonal cell line with cardiac myogenic and endothelial cell potentials. Dev Biol 1995; 167 : 469–81. [Google Scholar]
  14. Cohen-Gould L, Mikawa T. The fate diversity of mesodermal cells within the heart field during chicken early embryogenesis. Dev Biol 1996; 177 : 265–73. [Google Scholar]
  15. Porat Y, Porozov S, Belkin D, et al. Isolation of an adult blood-derived progenitor cell population capable of differentiation into angiogenic, myocardial and neural lineages. Br J Haematol 2006; 135 : 703–14. [Google Scholar]
  16. Ueno H, Weissman IL. Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev Cell 2006; 11 : 519–33. [Google Scholar]
  17. Furuta C, Ema H, Takayanagi S, et al. Discordant developmental waves of angioblasts and hemangioblasts in the early gastrulating mouse embryo. Development 2006; 133 : 2771–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.