Free Access
Issue
Med Sci (Paris)
Volume 23, Number 5, Mai 2007
Page(s) 519 - 525
Section M/S revues
DOI https://doi.org/10.1051/medsci/2007235519
Published online 15 May 2007
  1. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2005; 39 : 359–407. [Google Scholar]
  2. Mokranjac D, Neupert W. Protein import into mitochondria. Biochem Soc Trans 2005; 33 : 1019–23. [Google Scholar]
  3. Nugent JM, Palmer JD. RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 1991; 66 : 473–81. [Google Scholar]
  4. Ricchetti M, Tekaia F, Dujon B. Continued colonization of the human genome by mitochondrial DNA. PLoS Biol 2004; 2 : E273. [Google Scholar]
  5. Stupar RM, Lilly JW, Town CD, et al. Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci USA 2001; 98 : 5099–103. [Google Scholar]
  6. Knoop V. The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 2004; 46 : 123–39. [Google Scholar]
  7. Brown GG, Zhang M. Mitochondrial plasmids: DNA and RNA. In: Levings III, C S, Vasil I K, eds. The molecular biology of plant mitochondria. Dordrecht: Kluwer Academic Publishers, 1995. [Google Scholar]
  8. Koulintchenko M, Konstantinov Y, Dietrich A. Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J 2003; 22 : 1245–54. [Google Scholar]
  9. Koulintchenko M, Temperley R J, Mason PA, et al. Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression. Hum Mol Genet 2006; 15 : 143–54. [Google Scholar]
  10. Yoon YG, Koob MD. Transformation of isolated mammalian mitochondria by bacterial conjugation. Nucleic Acids Res 2005; 33 : e139. [Google Scholar]
  11. Entelis NS, Kolesnikova OA, Martin RP, Tarassov IA. RNA delivery into mitochondria. Adv Drug Deliv Rev 2001; 49 : 199–215. [Google Scholar]
  12. Entelis NS, Kolesnikova OA, Doga S, et al. 5 S rRNA and tRNA import into human mitochondria. Comparison of in vitro requirements. J Biol Chem 2001; 276 : 45642–53. [Google Scholar]
  13. Kolesnikova OA, Entelis NS, Mireau H, et al. Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science 2000; 289 : 1931–3. [Google Scholar]
  14. Entelis N, Brandina I, Kamenski P, et al.A glycolytic enzyme, enolase, is recruited as a cofactor of tRNA targeting toward mitochondria in Saccharomyces cerevisiae. Genes Dev 2006; 20 : 1609–20. [Google Scholar]
  15. Kolesnikova OA, Entelis NS, Jacquin-Becker C, et al. Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum Mol Genet 2004; 13 : 2519–34. [Google Scholar]
  16. Mahata B, Bhattacharyya SN, Mukherjee S, Adhya S. Correction of translational defects in patient-derived mutant mitochondria by complex-mediated import of a cytoplasmic tRNA. J Biol Chem 2005; 280 : 5141–4. [Google Scholar]
  17. Mahata B, Mukherjee S, Mishra S, et al. Functional delivery of a cytosolic tRNA into mutant mitochondria of human cells. Science 2006; 314 : 471–4. [Google Scholar]
  18. Manfredi G, Fu J, Ojaimi J, et al. Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus.Nat Genet 2002; 30 : 394–99. [Google Scholar]
  19. Bokori-Brown M, Holt IJ. Expression of algal nuclear ATP synthase subunit 6 in human cells results in protein targeting to mitochondria but no assembly into ATP synthase. Rejuvenation Res 2006; 9 : 455–69. [Google Scholar]
  20. Kaltimbacher V, Bonnet C, Lecoeuvre G, et al. mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein. RNA 2006; 12 : 1408–17. [Google Scholar]
  21. Bénit P, Lebon S, Chol M, et al. Mitochondrial NADH oxidation deficiency in humans. Curr Genomics 2004; 5 : 137–46. [Google Scholar]
  22. Yagi T, Seo BB, Nakamaru-Ogiso E, et al. Can a single subunit yeast NADH dehydrogenase (Ndi1) remedy diseases caused by respiratory complex I defects ? Rejuvenation Res 2006; 9 : 191–7. [Google Scholar]
  23. Bai Y, Hu P, Park JS, et al. Genetic and functional analysis of mitochondrial DNA-encoded complex I genes. Ann NY Acad Sci 2004; 1011 : 272–83. [Google Scholar]
  24. McDonald A, Vanlerberghe G. Branched mitochondrial electron transport in the animalia: presence of alternative oxidase in several animal phyla.IUBMB Life 2004; 56 : 333–41. [Google Scholar]
  25. Affourtit C, Krab K, Moore AL. Control of plant mitochondrial respiration. Biochim Biophys Acta 2001; 1504 : 58–69. [Google Scholar]
  26. Umbach AL, Ng VS, Siedow JN. Regulation of plant alternative oxidase activity: a tale of two cysteines. Biochim Biophys Acta 2006; 1757 : 135–42 [Google Scholar]
  27. Hakkaart GA, Dassa EP, Jacobs HT, Rustin P. Allotopic expression of a mitochondrial alternative oxidase confers cyanide resistance to human cell respiration. EMBO Rep 2005; 7 : 341–5. [Google Scholar]
  28. Tanaka M, Borgeld HJ, Zhang J, et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci 2002; 9 : 534–41. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.