Accès gratuit
Med Sci (Paris)
Volume 23, Numéro 5, Mai 2007
Page(s) 519 - 525
Section M/S revues
Publié en ligne 15 mai 2007
  1. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2005; 39 : 359–407. [Google Scholar]
  2. Mokranjac D, Neupert W. Protein import into mitochondria. Biochem Soc Trans 2005; 33 : 1019–23. [Google Scholar]
  3. Nugent JM, Palmer JD. RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 1991; 66 : 473–81. [Google Scholar]
  4. Ricchetti M, Tekaia F, Dujon B. Continued colonization of the human genome by mitochondrial DNA. PLoS Biol 2004; 2 : E273. [Google Scholar]
  5. Stupar RM, Lilly JW, Town CD, et al. Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci USA 2001; 98 : 5099–103. [Google Scholar]
  6. Knoop V. The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 2004; 46 : 123–39. [Google Scholar]
  7. Brown GG, Zhang M. Mitochondrial plasmids: DNA and RNA. In: Levings III, C S, Vasil I K, eds. The molecular biology of plant mitochondria. Dordrecht: Kluwer Academic Publishers, 1995. [Google Scholar]
  8. Koulintchenko M, Konstantinov Y, Dietrich A. Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J 2003; 22 : 1245–54. [Google Scholar]
  9. Koulintchenko M, Temperley R J, Mason PA, et al. Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression. Hum Mol Genet 2006; 15 : 143–54. [Google Scholar]
  10. Yoon YG, Koob MD. Transformation of isolated mammalian mitochondria by bacterial conjugation. Nucleic Acids Res 2005; 33 : e139. [Google Scholar]
  11. Entelis NS, Kolesnikova OA, Martin RP, Tarassov IA. RNA delivery into mitochondria. Adv Drug Deliv Rev 2001; 49 : 199–215. [Google Scholar]
  12. Entelis NS, Kolesnikova OA, Doga S, et al. 5 S rRNA and tRNA import into human mitochondria. Comparison of in vitro requirements. J Biol Chem 2001; 276 : 45642–53. [Google Scholar]
  13. Kolesnikova OA, Entelis NS, Mireau H, et al. Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science 2000; 289 : 1931–3. [Google Scholar]
  14. Entelis N, Brandina I, Kamenski P, et al.A glycolytic enzyme, enolase, is recruited as a cofactor of tRNA targeting toward mitochondria in Saccharomyces cerevisiae. Genes Dev 2006; 20 : 1609–20. [Google Scholar]
  15. Kolesnikova OA, Entelis NS, Jacquin-Becker C, et al. Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum Mol Genet 2004; 13 : 2519–34. [Google Scholar]
  16. Mahata B, Bhattacharyya SN, Mukherjee S, Adhya S. Correction of translational defects in patient-derived mutant mitochondria by complex-mediated import of a cytoplasmic tRNA. J Biol Chem 2005; 280 : 5141–4. [Google Scholar]
  17. Mahata B, Mukherjee S, Mishra S, et al. Functional delivery of a cytosolic tRNA into mutant mitochondria of human cells. Science 2006; 314 : 471–4. [Google Scholar]
  18. Manfredi G, Fu J, Ojaimi J, et al. Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus.Nat Genet 2002; 30 : 394–99. [Google Scholar]
  19. Bokori-Brown M, Holt IJ. Expression of algal nuclear ATP synthase subunit 6 in human cells results in protein targeting to mitochondria but no assembly into ATP synthase. Rejuvenation Res 2006; 9 : 455–69. [Google Scholar]
  20. Kaltimbacher V, Bonnet C, Lecoeuvre G, et al. mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein. RNA 2006; 12 : 1408–17. [Google Scholar]
  21. Bénit P, Lebon S, Chol M, et al. Mitochondrial NADH oxidation deficiency in humans. Curr Genomics 2004; 5 : 137–46. [Google Scholar]
  22. Yagi T, Seo BB, Nakamaru-Ogiso E, et al. Can a single subunit yeast NADH dehydrogenase (Ndi1) remedy diseases caused by respiratory complex I defects ? Rejuvenation Res 2006; 9 : 191–7. [Google Scholar]
  23. Bai Y, Hu P, Park JS, et al. Genetic and functional analysis of mitochondrial DNA-encoded complex I genes. Ann NY Acad Sci 2004; 1011 : 272–83. [Google Scholar]
  24. McDonald A, Vanlerberghe G. Branched mitochondrial electron transport in the animalia: presence of alternative oxidase in several animal phyla.IUBMB Life 2004; 56 : 333–41. [Google Scholar]
  25. Affourtit C, Krab K, Moore AL. Control of plant mitochondrial respiration. Biochim Biophys Acta 2001; 1504 : 58–69. [Google Scholar]
  26. Umbach AL, Ng VS, Siedow JN. Regulation of plant alternative oxidase activity: a tale of two cysteines. Biochim Biophys Acta 2006; 1757 : 135–42 [Google Scholar]
  27. Hakkaart GA, Dassa EP, Jacobs HT, Rustin P. Allotopic expression of a mitochondrial alternative oxidase confers cyanide resistance to human cell respiration. EMBO Rep 2005; 7 : 341–5. [Google Scholar]
  28. Tanaka M, Borgeld HJ, Zhang J, et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci 2002; 9 : 534–41. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.