Free Access
Issue
Med Sci (Paris)
Volume 23, Number 4, Avril 2007
Page(s) 386 - 390
Section M/S revues
DOI https://doi.org/10.1051/medsci/2007234386
Published online 15 April 2007
  1. Lowe DB, Shearer MH, Kennedy RC. DNA vaccines: successes and limitations in cancer and infectious disease. J Cell Biochem 2006; 98 : 235–42. [Google Scholar]
  2. Cui Z. DNA vaccine. Adv Genet 2005; 54 : 257–89. [Google Scholar]
  3. Lorin C, Delebecque F, Labrousse V, et al. A recombinant live attenuated measles vaccine vector primes effective HLA-A0201-restricted cytotoxic T lymphocytes and broadly neutralizing antibodies against HIV-1 conserved epitopes. Vaccine 2005; 23 : 4463–72. [Google Scholar]
  4. Lai CJ, Monath TP. Chimeric flaviviruses: novel vaccines against dengue fever, tick-borne encephalitis, and Japanese encephalitis. Adv Virus Res 2003; 61 : 469–509. [Google Scholar]
  5. Girard MP, Osmanov SK, Kieny MP. A review of vaccine research and development: the human immunodeficiency virus (HIV). Vaccine 2006; 24 : 4062–81. [Google Scholar]
  6. Kaufmann SH. Envisioning future strategies for vaccination against tuberculosis. Nat Rev Immunol 2006; 6 : 699–704. [Google Scholar]
  7. Li S, Locke E, Bruder J, et al. Viral vectors for malaria vaccine development. Vaccine 2007 (sous presse). [Google Scholar]
  8. Querec T, Bennouna S, Alkan S, et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med 2006; 203 : 413–24. [Google Scholar]
  9. Napolitani G, Rinaldi A, Bertoni F, et al. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 2005; 6 : 769–76. [Google Scholar]
  10. Bangari DS, Mittal SK. Development of nonhuman adenoviruses as vaccine vectors. Vaccine 2006; 24 : 849–62. [Google Scholar]
  11. Roberts DM, Nanda A, Havenga MJ, et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature 2006; 441 : 239–43. [Google Scholar]
  12. Woodland DL. Jump-starting the immune system: prime-boosting comes of age. Trends Immunol 2004; 25 : 98–104. [Google Scholar]
  13. Amara RR, Villinger F, Altman JD, et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 2001; 292 : 69–74. [Google Scholar]
  14. Shiver JW, Fu TM,. Chen L, et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 2002; 415 : 331–5. [Google Scholar]
  15. Vuola JM, Keating S, Webster DP, et al. Differential immunogenicity of various heterologous prime-boost vaccine regimens using DNA and viral vectors in healthy volunteers. J Immunol 2005; 174 : 449–55. [Google Scholar]
  16. Masopust D., Ha SJ, Vezys V, et al. Stimulation history dictates memory CD8 T cell phenotype: implications for prime-boost vaccination. J Immunol 2006; 177 : 831–9. [Google Scholar]
  17. Bonifaz L, D Bonnyay, K Mahnke, et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 2002; 196 : 1627–38. [Google Scholar]
  18. Bonifaz LC, Bonnyay DP, Charalambous A, et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199 : 815–24. [Google Scholar]
  19. Trumpfheller C, Finke JS, Lopez CB, et al. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J Exp Med 2006; 203 : 607–17. [Google Scholar]
  20. Boscardin SB, Hafalla JC, Masilamani RF, et al. Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. J Exp Med 2006; 203 : 599–606. [Google Scholar]
  21. Corbett AJ, Caminschi I, McKenzie BS, et al. Antigen delivery via two molecules on the CD8- dendritic cell subset induces humoral immunity in the absence of conventional « danger ». Eur J Immunol 2005; 35 : 2815–25. [Google Scholar]
  22. Tacken PJ, de Vries IJ, Gijzen K, et al. Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood 2005; 106 : 1278–85. [Google Scholar]
  23. Guermonprez P., Khelef N, Blouin E, et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). J Exp Med 2001; 193 : 1035–44. [Google Scholar]
  24. Guermonprez P, Fayolle C,. Rojas MJ, et al. In vivo receptor-mediated delivery of a recombinant invasive bacterial toxoid to CD11c+ CD8 alpha- CD11bhigh dendritic cells. Eur J Immunol 2002; 32 : 3071–81. [Google Scholar]
  25. Saron MF, Fayolle C, Sebo P, et al. Anti-viral protection conferred by recombinant adenylate cyclase toxins from Bordetella pertussis carrying a CD8+ T cell epitope from lymphocytic choriomeningitis virus. Proc Natl Acad Sci USA 1997; 94 : 3314–9. [Google Scholar]
  26. Mascarell L, Fayolle C, Bauche C, et al. Induction of neutralizing antibodies and Th1-polarized and CD4-independent CD8+ T-cell responses following delivery of human immunodeficiency virus type 1 Tat protein by recombinant adenylate cyclase of Bordetella pertussis. J Virol 2005; 79 : 9872–84. [Google Scholar]
  27. Mascarell L, Bauche C, Fayolle C, et al. Delivery of the HIV-1 Tat protein to dendritic cells by the CyaA vector induces specific Th1 responses and high affinity neutralizing antibodies in non human primates. Vaccine 2006; 24 : 3490–9. [Google Scholar]
  28. Preville X, Ladant D, Timmerman B, et al. Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16 E7 oncoprotein. Cancer Res 2005 : 65 : 641–9. [Google Scholar]
  29. Vingert B., Adotevi O, Patin D, et al. The Shiga toxin B-subunit targets antigen in vivo to dendritic cells and elicits anti-tumor immunity. Eur J Immunol 2006; 36 : 1124–35. [Google Scholar]
  30. Lu Y, Friedman R, Kushner N, et al. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity. Proc Natl Acad Sci USA 2000; 97 : 8027–32. [Google Scholar]
  31. Basu S, Binder RJ, Ramalingam T, et al. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 2001; 14 : 303–13. [Google Scholar]
  32. Hauser H, Shen L, Gu QL, et al. Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Ther 2004; 11 : 924–32. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.