Accès gratuit
Numéro
Med Sci (Paris)
Volume 23, Numéro 4, Avril 2007
Page(s) 386 - 390
Section M/S revues
DOI https://doi.org/10.1051/medsci/2007234386
Publié en ligne 15 avril 2007
  1. Lowe DB, Shearer MH, Kennedy RC. DNA vaccines: successes and limitations in cancer and infectious disease. J Cell Biochem 2006; 98 : 235–42.
  2. Cui Z. DNA vaccine. Adv Genet 2005; 54 : 257–89.
  3. Lorin C, Delebecque F, Labrousse V, et al. A recombinant live attenuated measles vaccine vector primes effective HLA-A0201-restricted cytotoxic T lymphocytes and broadly neutralizing antibodies against HIV-1 conserved epitopes. Vaccine 2005; 23 : 4463–72.
  4. Lai CJ, Monath TP. Chimeric flaviviruses: novel vaccines against dengue fever, tick-borne encephalitis, and Japanese encephalitis. Adv Virus Res 2003; 61 : 469–509.
  5. Girard MP, Osmanov SK, Kieny MP. A review of vaccine research and development: the human immunodeficiency virus (HIV). Vaccine 2006; 24 : 4062–81.
  6. Kaufmann SH. Envisioning future strategies for vaccination against tuberculosis. Nat Rev Immunol 2006; 6 : 699–704.
  7. Li S, Locke E, Bruder J, et al. Viral vectors for malaria vaccine development. Vaccine 2007 (sous presse).
  8. Querec T, Bennouna S, Alkan S, et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med 2006; 203 : 413–24.
  9. Napolitani G, Rinaldi A, Bertoni F, et al. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 2005; 6 : 769–76.
  10. Bangari DS, Mittal SK. Development of nonhuman adenoviruses as vaccine vectors. Vaccine 2006; 24 : 849–62.
  11. Roberts DM, Nanda A, Havenga MJ, et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature 2006; 441 : 239–43.
  12. Woodland DL. Jump-starting the immune system: prime-boosting comes of age. Trends Immunol 2004; 25 : 98–104.
  13. Amara RR, Villinger F, Altman JD, et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 2001; 292 : 69–74.
  14. Shiver JW, Fu TM,. Chen L, et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 2002; 415 : 331–5.
  15. Vuola JM, Keating S, Webster DP, et al. Differential immunogenicity of various heterologous prime-boost vaccine regimens using DNA and viral vectors in healthy volunteers. J Immunol 2005; 174 : 449–55.
  16. Masopust D., Ha SJ, Vezys V, et al. Stimulation history dictates memory CD8 T cell phenotype: implications for prime-boost vaccination. J Immunol 2006; 177 : 831–9.
  17. Bonifaz L, D Bonnyay, K Mahnke, et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 2002; 196 : 1627–38.
  18. Bonifaz LC, Bonnyay DP, Charalambous A, et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199 : 815–24.
  19. Trumpfheller C, Finke JS, Lopez CB, et al. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J Exp Med 2006; 203 : 607–17.
  20. Boscardin SB, Hafalla JC, Masilamani RF, et al. Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. J Exp Med 2006; 203 : 599–606.
  21. Corbett AJ, Caminschi I, McKenzie BS, et al. Antigen delivery via two molecules on the CD8- dendritic cell subset induces humoral immunity in the absence of conventional « danger ». Eur J Immunol 2005; 35 : 2815–25.
  22. Tacken PJ, de Vries IJ, Gijzen K, et al. Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood 2005; 106 : 1278–85.
  23. Guermonprez P., Khelef N, Blouin E, et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). J Exp Med 2001; 193 : 1035–44.
  24. Guermonprez P, Fayolle C,. Rojas MJ, et al. In vivo receptor-mediated delivery of a recombinant invasive bacterial toxoid to CD11c+ CD8 alpha- CD11bhigh dendritic cells. Eur J Immunol 2002; 32 : 3071–81.
  25. Saron MF, Fayolle C, Sebo P, et al. Anti-viral protection conferred by recombinant adenylate cyclase toxins from Bordetella pertussis carrying a CD8+ T cell epitope from lymphocytic choriomeningitis virus. Proc Natl Acad Sci USA 1997; 94 : 3314–9.
  26. Mascarell L, Fayolle C, Bauche C, et al. Induction of neutralizing antibodies and Th1-polarized and CD4-independent CD8+ T-cell responses following delivery of human immunodeficiency virus type 1 Tat protein by recombinant adenylate cyclase of Bordetella pertussis. J Virol 2005; 79 : 9872–84.
  27. Mascarell L, Bauche C, Fayolle C, et al. Delivery of the HIV-1 Tat protein to dendritic cells by the CyaA vector induces specific Th1 responses and high affinity neutralizing antibodies in non human primates. Vaccine 2006; 24 : 3490–9.
  28. Preville X, Ladant D, Timmerman B, et al. Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16 E7 oncoprotein. Cancer Res 2005 : 65 : 641–9.
  29. Vingert B., Adotevi O, Patin D, et al. The Shiga toxin B-subunit targets antigen in vivo to dendritic cells and elicits anti-tumor immunity. Eur J Immunol 2006; 36 : 1124–35.
  30. Lu Y, Friedman R, Kushner N, et al. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity. Proc Natl Acad Sci USA 2000; 97 : 8027–32.
  31. Basu S, Binder RJ, Ramalingam T, et al. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 2001; 14 : 303–13.
  32. Hauser H, Shen L, Gu QL, et al. Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Ther 2004; 11 : 924–32.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.