Free Access
Issue
Med Sci (Paris)
Volume 23, Number 3, Mars 2007
Page(s) 327 - 332
Section Forum
DOI https://doi.org/10.1051/medsci/2007233327
Published online 15 March 2007
  1. Collins FS. Shattuck lecture: medical and societal consequences of the Human Genome Project. N Engl J Med 1999; 341 : 28–37. [Google Scholar]
  2. Khoury MJ, McCabe LL, McCabe ER. Population screening in the age of genomic medicine. N Engl J Med 2003; 348 : 50–8. [Google Scholar]
  3. Holtzman NA, Marteau TM. Will genetics revolutionize medicine ? N Engl J Med 2000; 343 : 141–4. [Google Scholar]
  4. Eden P, Ritz C, Rose C, et al. «Good Old »clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers. Eur J Cancer 2004; 40 : 1837–41. [Google Scholar]
  5. Moatti JP, Chanut C, Benech JM. Researcher-driven versus policy-driven economic appraisal of health technologies: the case of France. Soc Sci Med 1994; 38 : 1625–33. [Google Scholar]
  6. Schrag D, Kuntz KM, Garber JE, Weeks JC. Life expectancy gains from cancer prevention strategies for women with breast cancer and BRCA1 or BRCA2 mutations. JAMA 2000; 283 : 617–24. [Google Scholar]
  7. Tengs TO, Winer EP, Paddock S, et al. Testing for the BRCA1 and BRCA2 breast-ovarian cancer susceptibility genes: a decision analysis. Med Decis Making 1998; 18 : 365–75. [Google Scholar]
  8. Kievit W, de Bruin JH, Adang EM, et al. Cost effectiveness of a new strategy to identify HNPCC patients. Gut 2005; 54 : 97–102. [Google Scholar]
  9. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002; 359 : 572–7. [Google Scholar]
  10. Petricoin EF 3rd, Ornstein DK, Paweletz CP, et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 2002; 94 : 1576–8. [Google Scholar]
  11. Davies RJ, Miller R, Coleman N. Colorectal cancer screening: prospects for molecular stool analysis. Nat Rev Cancer 2005; 5 : 199–209. [Google Scholar]
  12. Destro A, Bianchi P, Alloisio M, et al. K-ras and p16(INK4A)alterations in sputum of NSCLC patients and in heavy asymptomatic chronic smokers. Lung Cancer 2004; 44 : 23–32. [Google Scholar]
  13. Dulaimi E, Uzzo RG, Greenberg RE, et al. Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel. Clin Cancer Res 2004; 10 : 1887–93. [Google Scholar]
  14. Crocitto LE, Korns D, Kretzner L, et al. Prostate cancer molecular markers GSTP1 and hTERT in expressed prostatic secretions as predictors of biopsy results. Urology 2004; 64 : 821–5. [Google Scholar]
  15. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 1976; 451–8. [Google Scholar]
  16. Harris NL, Jaffe ES, Diebold J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol 1999; 17 : 3835–49. [Google Scholar]
  17. Tornillo L, Terracciano LM. An update on molecular genetics of gastrointestinal stromal tumours. J Clin Pathol 2006; 59 : 557–63. [Google Scholar]
  18. Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286 : 531–7. [Google Scholar]
  19. Harris NL, Horning SJ. Burkitt’s lymphoma--the message from microarrays. N Engl J Med 2006; 354 : 2495–8. [Google Scholar]
  20. Olivier M, Hussain SP, Caron de Fromentel C, et al. TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ 2004; 247–70. [Google Scholar]
  21. Brauch H, Weirich G, Hornauer MA, et al. Trichloroethylene exposure and specific somatic mutations in patients with renal cell carcinoma. J Natl Cancer Inst 1999; 91 : 854–61. [Google Scholar]
  22. Ntzani EE, Ioannidis JP. Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. Lancet 2003; 362 : 1439–44. [Google Scholar]
  23. Baser ME, Kuramoto L, Woods R, et al. The location of constitutional neurofibromatosis 2 (NF2) splice site mutations is associated with the severity of NF2. J Med Genet 2005; 42 : 540–6. [Google Scholar]
  24. Bertucci F, Houlgatte R, Granjeaud S, et al. Prognosis of breast cancer and gene expression profiling using DNA arrays. Ann NY Acad Sci 2002; 975 : 217–31. [Google Scholar]
  25. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344 : 783–92. [Google Scholar]
  26. Meng S, Tripathy D, Shete S, et al. HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci USA 2004; 101 : 9393–8. [Google Scholar]
  27. Esteva FJ, Valero V, Booser D, et al. Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20 : 1800–8. [Google Scholar]
  28. Dervieux T, Meshkin B, Neri B. Pharmacogenetic testing: proofs of principle and pharmacoeconomic implications. Mutat Res 2005; 573 : 180–94. [Google Scholar]
  29. Relling MV, Hancock ML, Rivera GK, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 1999; 91 : 2001–8. [Google Scholar]
  30. Mathijssen RH, de Jong FA, van Schaik RH, et al. Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes. J Natl Cancer Inst 2004; 96 : 1585–92. [Google Scholar]
  31. Bernard-Marty C, Cardoso F, Sotiriou C, Piccart MJ. Vers une individualisation du traitement systémique du cancer du sein. Bull Cancer 2006; 93 : 791–7. [Google Scholar]
  32. Warnock M. Some moral problems in medicine. Health Econ 1994; 3 : 297–300. [Google Scholar]
  33. Haddow J, Palomaki G. ACCE: a modelprocess for evaluating data on emerging genetic tests. In: Khoury M, Little J, Burke W, eds. Human genome epidemiology. New York : Oxford University Press ; 2004 : 217–233. [Google Scholar]
  34. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nat Genet 2001; 306–9. [Google Scholar]
  35. Simon R. Development and validation of therapeutically relevant multi-gene biomarker classifiers. J Natl Cancer Inst 2005; 97 : 866–7. [Google Scholar]
  36. Camargo MC, Mera R, Correa P, et al. Interleukin-1beta and interleukin-1 receptor antagonist gene polymorphisms and gastric cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2006; 15 : 1674–87. [Google Scholar]
  37. Simon R, Radmacher MD, Dobbin K, McShane LM. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 2003; 95 : 14–8. [Google Scholar]
  38. Harris R. Effectiveness: the next question for breast cancer screening. J Natl Cancer Inst 2005; 97 : 1021–3. [Google Scholar]
  39. Lerman C, Hughes C, Lemon SJ, et al. What you don’t know can hurt you: adverse psychologic effects in members of BRCA1-linked and BRCA2-linked families who decline genetic testing. J Clin Oncol 1998; 16 : 1650–4. [Google Scholar]
  40. Julian-Reynier C, Eisinger F, Chabal F, et al. Disclosure to the family of breast/ovarian cancer genetic test results: Patient’s willingness and associated factors. Am J Med Genet 2000; 94 : 13–8. [Google Scholar]
  41. Deftos LJ. The evolving duty to disclose the presence of genetic disease to relatives. Acad Med 1998; 73 : 962–8. [Google Scholar]
  42. Keogh LA, Southey MC, Maskiell J, et al. Uptake of offer to receive genetic information about BRCA1 and BRCA2 mutations in an Australian population-based study. Cancer Epidemiol Biomarkers Prev 2004; 13 : 2258–63. [Google Scholar]
  43. Porteous M, Dunckley M, Appleton S, et al. Is it acceptable to approach colorectal cancer patients at diagnosis to discuss genetic testing ? A pilot study. Br J Cancer 2003; 89 : 1400–2. [Google Scholar]
  44. Keller M, Jost R, Kadmon M, et al. Acceptance of and attitude toward genetic testing for hereditary nonpolyposis colorectal cancer: a comparison of participants and nonparticipants in genetic counseling. Dis Colon Rectum 2004; 47 : 153–62. [Google Scholar]
  45. Braithwaite D, Emery J, Walter F, et al. Psychological impact of genetic counseling for familial cancer: a systematic review and meta-analysis. J Natl Cancer Inst 2004; 96 : 122–33. [Google Scholar]
  46. Hoy M, Orsi F, Eisinger F, Moatti J. The Impact of genetic testing on Healthcare Insurance. The Geneva Papers on Risk and Insurance 2003; 203–21. [Google Scholar]
  47. Smith C. Genomics: getting down to details. Nature 2005; 435 : 991–4. [Google Scholar]
  48. Schrag D, Kuntz KM, Garber JE, Weeks JC. Decision analysis-effects of prophylactic mastectomy and oophorectomy on life expectancy among women with BRCA1 or BRCA2 mutations. N Engl J Med 1997; 336 : 1465–71. [Google Scholar]
  49. Heiskanen I, Luostarinen T, Jarvinen HJ. Impact of screening examinations on survival in familial adenomatous polyposis. Scand J Gastroenterol 2000; 35 : 1284–7. [Google Scholar]
  50. Jarvinen HJ, Aarnio M, Mustonen H, et al. Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology 2000; 118 : 829–34. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.