Free Access
Issue
Med Sci (Paris)
Volume 23, Number 3, Mars 2007
Page(s) 273 - 278
Section M/S revues
DOI https://doi.org/10.1051/medsci/2007233273
Published online 15 March 2007
  1. Lo Conte L, Chothia C, Janin J. The atomic structure of protein-protein recognition sites. J Mol Biol 1999; 285 : 2177–98. [Google Scholar]
  2. Nooren IMA, Thornton JM. Structural characterization and functional significance of transient protein-protein interactions. J Mol Biol 2003; 325 : 991–1018. [Google Scholar]
  3. Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol 1998; 280 : 1–9. [Google Scholar]
  4. Kussie PH, Gorina S, Marechal V, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996; 274 : 948–53. [Google Scholar]
  5. Teague SJ. Implication of protein flexibility for drug discovery. Nat Rev Drug Discov 2003; 2 : 527–41. [Google Scholar]
  6. DeLano WL, Ultsch MH, de Vos AM, Wells JA. Convergent solutions to binding at a protein-protein interface. Science 2000; 287 : 1279–83. [Google Scholar]
  7. Kim c, Xuong NH, Taylor SS. Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA. Science 2005; 307 : 690–6. [Google Scholar]
  8. Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303 : 844–8. [Google Scholar]
  9. Piehler J. New methodologies for measuring protein interactions in vivo and in vitro. Curr Opin Struct Biol 2005; 15 : 4–14. [Google Scholar]
  10. Toby GG, Golemis EA. Using the yeast interaction trap and other two-hybrid-based approaches to study protein-protein interactions. Methods 2001; 24 : 201–17. [Google Scholar]
  11. Serebriiskii IG, Kotova E. Analysis of protein-protein interactions utilizing dual bait yeast two-hybrid system. Meth Mol Biol 2004; 261 : 263–96. [Google Scholar]
  12. Trugnan G, Fontanges P, Delautier D, Ait-Slimane T. FRAP, FLIP, FRET, BRET, FLIM, PRIM… De nouvelles techniques pour voir la vie en couleur ! Med Sci (Paris) 2004; 20 : 1027–34. [Google Scholar]
  13. Pfleger KD, Eidne KA. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 2006; 3 : 165–74. [Google Scholar]
  14. Thaminy S, Miller J, Stagljar I. The split-ubiquitin membrane-based yeast two-hybrid system. Meth Mol Biol 2004; 261 : 297–312. [Google Scholar]
  15. Hu CD, Kerpolla TK. Simultaneous visualization of multiple protein interactions in living cells using multicolour fluorescence complementation analysis. Nat Biotechnol 2003; 21 : 539–45. [Google Scholar]
  16. Lebowitz J, Lewis MS, Schuck P. Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 2002; 11 : 2067–79. [Google Scholar]
  17. Karlsson R, Falt A. Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J Immunol Methods 1997; 200 : 121–33. [Google Scholar]
  18. Pierce MM, Raman CS, Nall BT. Isothermal titration calorimetry of protein-protein interactions. Methods 1999; 19 : 213–21. [Google Scholar]
  19. Kay LE. NMR studies of protein structure and dynamics. J Magn Resonance 2005; 173 : 193–207. [Google Scholar]
  20. Dauter Z. Current state and prospects of macromolecular crystallography. Acta Crystallographica D Biol Crystallogr 2006; 62 : 1–11. [Google Scholar]
  21. Erlanson DA, McDowell RS, O’Brien T. Fragment-based drug discovery. J Med Chem 2004; 47 : 3463–82. [Google Scholar]
  22. Wermuth CG. Les grandes méthodes de découverte sont-elles appropriées ? Biofutur 2003; 239 : 23–7. [Google Scholar]
  23. Kitov PI, Sadowska JM, Mulvey G, et al. Shiga-like toxins are neutralized by tailored multivalent ligands. Nature 2000; 403 : 669–72. [Google Scholar]
  24. Verma R, Peters NR, D’Onofrio M, et al. Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science 2004; 306 : 117–20. [Google Scholar]
  25. Luo C, Laaja P. Inhibitors of JAKs/STATs and the kinases: a possible new cluster of drugs. Drug Discov Today 2004; 9 : 268–75. [Google Scholar]
  26. Garcia-Echeverria C, Pearson MA, Marti A, et al. In vivo antitumor activity of NVP-AEW541. A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 2004; 5 : 231–8. [Google Scholar]
  27. Song M, Rajesh S, Hayashi Y, Kiso Y. Design and synthesis of new inhibitors of HIV-1 protease dimerization with conformationally constrained templates. Bioorg Med Chem Lett 2001; 11 : 2465–8. [Google Scholar]
  28. Huang Z. Bcl-2 family proteins as targets for anticancer drug design. Oncogene 2000; 19 : 6627–31. [Google Scholar]
  29. Sattler M, Liang H, Nettesheim D, et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 1997; 275 : 983–6. [Google Scholar]
  30. Degterev A, Lugovskoy A, Cardone M, et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 2001; 3 : 173–82. [Google Scholar]
  31. Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435 : 677–81. [Google Scholar]
  32. Bilim V, Kasahara T, Hara N, et al. Role of XIAP in the malignant phenotype of transitional cell cancer (TCC) and therapeutic activity of XIAP antisense oligonucleotides against multidrug-resistant TCC in vitro. Int J Cancer 2003; 103 : 29–37. [Google Scholar]
  33. Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102 : 33–42. [Google Scholar]
  34. Fulda S, Wick W, Weller M, Debatin KM. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 2002; 8 : 808–15. [Google Scholar]
  35. Liu Z, Sun C, Olejniczak ET, et al. Structural basis for binding of Smac/Diablo to the XIAP BIR3 domain. Nature 2000; 408 : 1004–8. [Google Scholar]
  36. Li L, Thomas RM, Suzuki H, et al. A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 2004; 305 : 1471–4. [Google Scholar]
  37. Bottger A, Bottger V, Sparks A, et al. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr Biol 1997; 7 : 860–9. [Google Scholar]
  38. Mukherjee AK, Basu S, Sarkar N, Ghosh AC. Advances in cancer therapy with plant based natural products. Curr Med Chem 2001; 8 : 1467–86. [Google Scholar]
  39. Oost TK, Sun C, Armstrong RC, et al. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 2004; 47 : 4417–26. [Google Scholar]
  40. Fasan R, Dias RL, Moehle K, et al. Structure-activity studies in a family of beta-hairpin protein epitope mimetic inhibitors of the p53-HDM2 protein-protein interaction. Chembiochem 2006; 7 : 515–26. [Google Scholar]
  41. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera. A visualization system for exploratory research and analysis. J Comput Chem 2004; 25 : 1605–12. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.