Accès gratuit
Numéro |
Med Sci (Paris)
Volume 23, Numéro 3, Mars 2007
|
|
---|---|---|
Page(s) | 273 - 278 | |
Section | M/S revues | |
DOI | https://doi.org/10.1051/medsci/2007233273 | |
Publié en ligne | 15 mars 2007 |
- Lo Conte L, Chothia C, Janin J. The atomic structure of protein-protein recognition sites. J Mol Biol 1999; 285 : 2177–98. [Google Scholar]
- Nooren IMA, Thornton JM. Structural characterization and functional significance of transient protein-protein interactions. J Mol Biol 2003; 325 : 991–1018. [Google Scholar]
- Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol 1998; 280 : 1–9. [Google Scholar]
- Kussie PH, Gorina S, Marechal V, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996; 274 : 948–53. [Google Scholar]
- Teague SJ. Implication of protein flexibility for drug discovery. Nat Rev Drug Discov 2003; 2 : 527–41. [Google Scholar]
- DeLano WL, Ultsch MH, de Vos AM, Wells JA. Convergent solutions to binding at a protein-protein interface. Science 2000; 287 : 1279–83. [Google Scholar]
- Kim c, Xuong NH, Taylor SS. Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA. Science 2005; 307 : 690–6. [Google Scholar]
- Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303 : 844–8. [Google Scholar]
- Piehler J. New methodologies for measuring protein interactions in vivo and in vitro. Curr Opin Struct Biol 2005; 15 : 4–14. [Google Scholar]
- Toby GG, Golemis EA. Using the yeast interaction trap and other two-hybrid-based approaches to study protein-protein interactions. Methods 2001; 24 : 201–17. [Google Scholar]
- Serebriiskii IG, Kotova E. Analysis of protein-protein interactions utilizing dual bait yeast two-hybrid system. Meth Mol Biol 2004; 261 : 263–96. [Google Scholar]
- Trugnan G, Fontanges P, Delautier D, Ait-Slimane T. FRAP, FLIP, FRET, BRET, FLIM, PRIM… De nouvelles techniques pour voir la vie en couleur ! Med Sci (Paris) 2004; 20 : 1027–34. [Google Scholar]
- Pfleger KD, Eidne KA. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 2006; 3 : 165–74. [Google Scholar]
- Thaminy S, Miller J, Stagljar I. The split-ubiquitin membrane-based yeast two-hybrid system. Meth Mol Biol 2004; 261 : 297–312. [Google Scholar]
- Hu CD, Kerpolla TK. Simultaneous visualization of multiple protein interactions in living cells using multicolour fluorescence complementation analysis. Nat Biotechnol 2003; 21 : 539–45. [Google Scholar]
- Lebowitz J, Lewis MS, Schuck P. Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 2002; 11 : 2067–79. [Google Scholar]
- Karlsson R, Falt A. Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J Immunol Methods 1997; 200 : 121–33. [Google Scholar]
- Pierce MM, Raman CS, Nall BT. Isothermal titration calorimetry of protein-protein interactions. Methods 1999; 19 : 213–21. [Google Scholar]
- Kay LE. NMR studies of protein structure and dynamics. J Magn Resonance 2005; 173 : 193–207. [Google Scholar]
- Dauter Z. Current state and prospects of macromolecular crystallography. Acta Crystallographica D Biol Crystallogr 2006; 62 : 1–11. [Google Scholar]
- Erlanson DA, McDowell RS, O’Brien T. Fragment-based drug discovery. J Med Chem 2004; 47 : 3463–82. [Google Scholar]
- Wermuth CG. Les grandes méthodes de découverte sont-elles appropriées ? Biofutur 2003; 239 : 23–7. [Google Scholar]
- Kitov PI, Sadowska JM, Mulvey G, et al. Shiga-like toxins are neutralized by tailored multivalent ligands. Nature 2000; 403 : 669–72. [Google Scholar]
- Verma R, Peters NR, D’Onofrio M, et al. Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science 2004; 306 : 117–20. [Google Scholar]
- Luo C, Laaja P. Inhibitors of JAKs/STATs and the kinases: a possible new cluster of drugs. Drug Discov Today 2004; 9 : 268–75. [Google Scholar]
- Garcia-Echeverria C, Pearson MA, Marti A, et al. In vivo antitumor activity of NVP-AEW541. A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 2004; 5 : 231–8. [Google Scholar]
- Song M, Rajesh S, Hayashi Y, Kiso Y. Design and synthesis of new inhibitors of HIV-1 protease dimerization with conformationally constrained templates. Bioorg Med Chem Lett 2001; 11 : 2465–8. [Google Scholar]
- Huang Z. Bcl-2 family proteins as targets for anticancer drug design. Oncogene 2000; 19 : 6627–31. [Google Scholar]
- Sattler M, Liang H, Nettesheim D, et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 1997; 275 : 983–6. [Google Scholar]
- Degterev A, Lugovskoy A, Cardone M, et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 2001; 3 : 173–82. [Google Scholar]
- Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435 : 677–81. [Google Scholar]
- Bilim V, Kasahara T, Hara N, et al. Role of XIAP in the malignant phenotype of transitional cell cancer (TCC) and therapeutic activity of XIAP antisense oligonucleotides against multidrug-resistant TCC in vitro. Int J Cancer 2003; 103 : 29–37. [Google Scholar]
- Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102 : 33–42. [Google Scholar]
- Fulda S, Wick W, Weller M, Debatin KM. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 2002; 8 : 808–15. [Google Scholar]
- Liu Z, Sun C, Olejniczak ET, et al. Structural basis for binding of Smac/Diablo to the XIAP BIR3 domain. Nature 2000; 408 : 1004–8. [Google Scholar]
- Li L, Thomas RM, Suzuki H, et al. A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 2004; 305 : 1471–4. [Google Scholar]
- Bottger A, Bottger V, Sparks A, et al. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr Biol 1997; 7 : 860–9. [Google Scholar]
- Mukherjee AK, Basu S, Sarkar N, Ghosh AC. Advances in cancer therapy with plant based natural products. Curr Med Chem 2001; 8 : 1467–86. [Google Scholar]
- Oost TK, Sun C, Armstrong RC, et al. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 2004; 47 : 4417–26. [Google Scholar]
- Fasan R, Dias RL, Moehle K, et al. Structure-activity studies in a family of beta-hairpin protein epitope mimetic inhibitors of the p53-HDM2 protein-protein interaction. Chembiochem 2006; 7 : 515–26. [Google Scholar]
- Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera. A visualization system for exploratory research and analysis. J Comput Chem 2004; 25 : 1605–12. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.