Free Access
Issue
Med Sci (Paris)
Volume 23, Number 2, Février 2007
Page(s) 124 - 126
Section Nouvelles
DOI https://doi.org/10.1051/medsci/2007232124
Published online 15 February 2007
  1. Remontet L, Estève J, Bouvier AM, et al. Estimations nationales : tendances de l’incidence et de la mortalité par cancer en France de 1978 à 2000 (Institut National de Veille Sanitaire). BEH 2003; 41–42 : 190–3. [Google Scholar]
  2. Zanetti R, Rosso S, Martinez C, et al. The multicenter south European study « Helios ». I. Skin characteristics and sunburns in basal and squamous cell carcinomas of the skin. Br J Cancer 1996; 73: 1440–6. [Google Scholar]
  3. Magnaldo T. La « guerre » du NER (nucleotide excision repair). Med Sci (Paris) 2004; 20 : 268–70. [Google Scholar]
  4. Melnikova VO, Ananthaswamy HN. Cellular and molecular events leading to the development of skin cancer. Mutat Res 2005; 571 : 91–106. [Google Scholar]
  5. Sage E, Moustacchi E. Un rôle pour les UVA dans les dommages solaires causés à l’ADN. Med Sci (Paris) 1996; 12 : 806. [Google Scholar]
  6. Wondrak GT, Jacobson MK, Jacobson EL. Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci 2006; 5 : 215–37. [Google Scholar]
  7. Peak JG, Peak MJ. Comparison of initial yields of DNA-to-protein crosslinks and single-strand breaks induced in cultured human cells by far- and near-ultraviolet light, blue light and X-rays. Mutat Res 1991; 246 : 187–91. [Google Scholar]
  8. Rosen JE, Prahalad AK, Williams GM. 8-Oxodeoxyguanosine formation in the DNA of cultured cells after exposure to H2O2 alone or with UVB or UVA irradiation. Photochem Photobiol 1996; 64 : 117–22. [Google Scholar]
  9. Kielbassa C, Roza L, Epe B. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 1997; 18 : 811–6. [Google Scholar]
  10. Perdiz D, Grof P, Mezzina M, et al. Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells. Possible role of Dewar photoproducts in solar mutagenesis. J Biol Chem 2000; 275 : 26732–42. [Google Scholar]
  11. Douki T, Reynaud-Angelin A, Cadet J, et al. Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry 2003; 42 : 9221–6. [Google Scholar]
  12. Courdavault S, Baudouin C, Charveron M, et al. Larger yield of cyclobutane dimers than 8 oxo-7,8-dihydroguanine in the DNA of UVA-irradiated human skin cells. Mutat Res 2004; 556 : 135–42. [Google Scholar]
  13. Mouret S, Baudouin C, Charveron M, et al. Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci USA 2006; 103 : 13765–70. [Google Scholar]
  14. Beani JC. Photoprotecteurs externes et cancers cutanés. Ann Dermatol Venereol 1996; 123 : 666–74. [Google Scholar]
  15. Green A, Williams G, Neale R, et al. Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial. Lancet 1999; 354 : 723–9. [Google Scholar]
  16. Gallagher RP, Rivers JK, Lee TK, et al. Broad-spectrum sunscreen use and the development of new nevi in white children: a randomized controlled trial. JAMA 2000; 283: 2955–60. [Google Scholar]
  17. Beani JC. La photoprotection externe. In : Photodermatologie. Paris : Arnette, 2003 : 131–46. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.