Free Access
Issue
Med Sci (Paris)
Volume 23, Number 1, Janvier 2007
Page(s) 15 - 17
Section Nouvelles
DOI https://doi.org/10.1051/medsci/200723115
Published online 15 January 2007
  1. Hildebrand JG, Shepherd GM. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 1997; 18 : 5999–6008. [Google Scholar]
  2. Vassar R, Chao SK, Sitcheran R, et al. Topographic organization of sensory projections to the olfactory bulb. Cell 1994; 79 : 981–91. [Google Scholar]
  3. Rodrigues V. Spatial coding of olfactory information in the antennal lobe of Drosophila melanogaster. Brain Res 1988; 453 : 299–307. [Google Scholar]
  4. Joerges J, Kuttner A, Galizia CG, et al. Representations of odours and odour mixtures visualized in the honeybee brain. Nature 1997; 387 : 285–8. [Google Scholar]
  5. Menzel R, Giurfa M. Cognitive architecture of a mini-brain: the honeybee. Trends Cogn Sci 2001; 5 : 62–71. [Google Scholar]
  6. Sachse S, Rappert A, Galizia CG. The spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code. Eur J Neurosci 1999; 11 : 3970–82. [Google Scholar]
  7. Guerrieri F, Schubert M, Sandoz JC, et al. Perceptual and neural olfactory similarity in honeybees. PLoS Biol 2005; 3 : 1–14. [Google Scholar]
  8. Faber T, Joerges J, Menzel R. Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci 1999; 2 : 74–8. [Google Scholar]
  9. Sandoz JC, Galizia CG, Menzel R. Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes. Neurosci 2003; 120 : 1137–48. [Google Scholar]
  10. Berridge MJ. Neuronal calcium signaling. Neuron 1998; 21 : 13–26. [Google Scholar]
  11. Matsumoto Y, Unoki S, Aonuma H, et al. Critical role of nitric oxide-cGMP cascade in the formation of cAMP-dependent long-term memory. Learn Mem 2006; 13 : 35–44. [Google Scholar]
  12. Gauthier M, Dacher M, Thany S, et al. Involvement of alpha-bungarotoxin-sensitive nicotinic brain receptors in long-term memory formation in the honeybee (Apis mellifera). Neurobiol Learn Mem 2006; 86 : 164–74. [Google Scholar]
  13. Thany SH, Crozatier M, Raymond-Delpech V, et al. G. Apisα2, Apisα7-1 and Apisα7-2: three new neuronal nicotinic acetylcholine receptor α-subunits in the honeybee brain. Gene 2005; 344 : 125–32. [Google Scholar]
  14. Müller U. Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 2000; 27 : 159–68. [Google Scholar]
  15. Brandt R, Rohlfing T, Rybak J, et al. Three-dimensional average-shape atlas of the honeybee brain and its applications. J Comp Neurol 2005; 492 : 1–19. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.