Free Access
Med Sci (Paris)
Volume 22, Number 10, Octobre 2006
Page(s) 865 - 871
Section M/S revues
Published online 15 October 2006
  1. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclinD/CDK4. Nature 1993; 366 : 704–7. [Google Scholar]
  2. Wolff B, Naumann M. INK4 cell cycle inhibitors direct transcriptional inactivation of NF-kappaB. Oncogene 1999; 18 : 2663–6. [Google Scholar]
  3. Haas K, Staller P, Geisen C, et al. Mutual requirement of CDK4 and Myc in malignant transformation : evidence for cyclin D1/CDK4 and p16INK4A as upstream regulators of Myc. Oncogene 1997; 10 : 179–92. [Google Scholar]
  4. Serizawa H. Cyclin-dependent kinase inhibitor p16INK4A inhibits phosphorylation of RNA polymerase II by general transcription factor TFIIH. J Biol Chem 1998; 273 : 5427–30. [Google Scholar]
  5. Nobori T, Miura K, Wu DJ, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994; 368 : 753–6. [Google Scholar]
  6. Merlo A, Herman JG, Mao L, et al. 5’pG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1995; 1 : 686–92 [Google Scholar]
  7. Sandig V, Brand K, Herwig S, et al. Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death. Nat Med 1997; 3 : 313–9. [Google Scholar]
  8. Kim M, Katayose Y, Rojanala L, et al. Induction of apoptosis in p16INK4A mutant cell lines by adenovirus-mediated overexpression of p16INK4A protein. Cell Death Differ 2000; 7 : 706–11. [Google Scholar]
  9. Ausserlechner MJ, Obexer P, Geley S, et al. G1 arrest by p16INK4A uncouples growth from cell cycle progression in leukemia cells with deregulated cyclin E and c-Myc expression. Leukemia 2005; 19 : 1051–7. [Google Scholar]
  10. Sharpless NE, DePinho RA. The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev 1999; 9 : 22–30 [Google Scholar]
  11. Hara E, Smith R, Parry D, et al. Regulation of p16CDKN2 expression and its implication for cell immortalization and senescence. Mol Cell Biol 1996; 16 : 859–67 [Google Scholar]
  12. Li Y, Nicolas MA, Shay JW, et al. Transcriptional repression of the D-type cyclin dependent kinase inhibitor p16 by retinoblastoma susceptibility gene product pRb. Cancer Res 1994; 54 : 6078–82. [Google Scholar]
  13. Serrano M, Lin AW, McCurrach ME, et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88 : 593–602. [Google Scholar]
  14. Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53 : ARF-INK4a locus deletion impairs both the pRb and p53 tumor suppression pathways. Cell 1998; 92 : 725–34. [Google Scholar]
  15. Shapiro GI, Edwards CD, Ewen ME, et al. p16ink4a participates in a G1 arrest checkpoint in response to DNA damage. Mol Cell Biol 1998; 18 : 378–87. [Google Scholar]
  16. Krimpenfort P, Quon K.C, Mooi WJ, et al. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 2001; 413 : 83–6. [Google Scholar]
  17. Serrano M, Lee H, Chin L, et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 1996; 85 : 27–37. [Google Scholar]
  18. Brookes S, Rowe J, Ruas M, et al. INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence. EMBO J 2002; 21 : 2936–45. [Google Scholar]
  19. Drayton S, Rowe J, Jones R, et al. Tumor suppressor p16INK4a determines sensitivity of human cells to transformation by cooperating cellular oncogenes. Cancer Cell 2003; 4 : 301–10 [Google Scholar]
  20. Gump J, Stokoe D, McCormick F. Phosphorylation of p16INK4A correlates with Cdk4 association. J Biol Chem 2003; 278 : 6619–22. [Google Scholar]
  21. Mekki Y, Catallo R, Bertrand Y, et al. Enhanced expression of p16ink4a is associated with a poor prognosis in childhood acute lymphoblastic leukemia. Leukemia 1999; 13 : 181–9. [Google Scholar]
  22. Zhu J, Woods D, McMahon M, et al. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 1998; 12 : 2997–3007. [Google Scholar]
  23. Ohtani N, Zebedee Z, Huot TJG, et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 2001; 409 : 1067–70. [Google Scholar]
  24. Ohtani N, Brennan P, Gaubatz S, et al. Epstein-Barr virus LMP1 blocks p16INK4a-pRb pathway by promoting nuclear export of E2F4/5. J Cell Biol 2003; 162 : 173–83. [Google Scholar]
  25. Pagliuca A, Gallo P, De Luca P, et al. Class A helix-loop-helix proteins are positive regulators of several cyclin-dependent kinase inhibitors’ promoter activity and negatively affect cell growth. Cancer Res 2000; 60 : 1376–82 [Google Scholar]
  26. Zheng W, Wang H, Xue L, et al. Regulation of cellular senescence and p16INK4a expression by Id1 and E47 proteins in human diploid fibroblast. J Biol Chem 2004; 279 : 31524–32. [Google Scholar]
  27. Hansson A, Manetopoulos C, Jönsson JI, et al. The basic helix-loop-helix transcription factor TAL1/SCL inhibits the expression of the p16INK4A and pT genes. Biochem Biophys Res Commun 2003; 312 : 1073–81. [Google Scholar]
  28. Hara E, Yamaguchi T, Nojima H, et al. Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J Biol Chem 1994; 269 : 2139–45. [Google Scholar]
  29. Alani RM, Young AZ, Shifflett CB. Id1 regulation of cellular senescence through transcriptional repression of p16/INK4a. Proc Natl Acad Sci USA 2001; 98 : 7812–6. [Google Scholar]
  30. Nickoloff BJ, Chaturvedi V, Bacon P, et al. Id-1 delays senescence but does not immortalize keratinocytes. J Biol Chem 2000; 275 : 27501–4. [Google Scholar]
  31. Tang J, Gordon GM, Nickoloff BJ, et al. The helix-loop-helix protein Id-1 delays onset of replicative senescence in human endothelial cells. Lab Invest 2002; 82 : 1073–9. [Google Scholar]
  32. Polsky D, Young AZ, Busam KJ, et al. The transcriptional repressor of p16INK4a, Id1, is up-regulated in early melanomas. Cancer Res 2001; 61 : 6008–11. [Google Scholar]
  33. Pesce S, Benezra R. The loop region of the helix-loop-helix protein Id1 is critical for its dominant negative activity. Mol Cell Biol 1993; 13 : 7874–80. [Google Scholar]
  34. Jacobs JJL, Kieboom K, Marino S, et al. The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the INK4a locus. Nature 1999; 397 : 164–8. [Google Scholar]
  35. Itahana K, Zou Y, Itahana Y, et al. Control of the replicative life span of human fibroblasts by p16 and polycomb protein Bmi-1. Mol Cell Biol 2003; 23 : 389–401. [Google Scholar]
  36. Dellino GI, Schwartz YB, Farkas G, et al. Polycomb silencing blocks transcription initiation. Mol Cell 2004; 13 : 887–93. [Google Scholar]
  37. Costello JF, Berger MS, Huang HS, et al. Silencing of p16/CDKN2 expression in humain gliomas by methylation and chromatin condensation. Cancer Res 1996; 56 : 2405–10. [Google Scholar]
  38. Fournel M, Sapieha P, Beaulieu N, et al. Down regulation of human DNA-(cytosine-5) methyltransferase induces cell cycle regulators p16INK4a and p21WAF/Cipl by distinct mechanisms. J Biol Chem 1999; 274 : 24250–6. [Google Scholar]
  39. Robert MF, Morin S, Beaulieu N, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 2003; 33 : 61–5. [Google Scholar]
  40. Bachman KE, Park BH, Rhee I, et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer cell 2003; 3 : 89–95. [Google Scholar]
  41. Magdinier F, Wolffe AP. Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia. Proc Natl Acad Sci USA 2001; 98 : 4990–5 [Google Scholar]
  42. Kondo E, Gu Z, Horii A, et al. The Thymine DNA glycosylase MBD4 represses transcription and is associated with methylated p16INK4a and hMLH1 genes. Mol Cell Biol 2005; 25 : 4388–96. [Google Scholar]
  43. Ng HH, Zhang Y, Hendrich B, et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 1999; 23 : 58–61. [Google Scholar]
  44. Myöhänen S, Baylin SB. Sequence-specific DNA binding activity of RNA helicase A to the p16INK4a promoter. J Biol Chem 2001; 276 : 1634–42. [Google Scholar]
  45. Oruetxebarria I, Venturini F, Kekarainen T, et al. p16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cells. J Biol Chem 2004; 279 : 3807–16. [Google Scholar]
  46. Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 2002; 298 : 1039–43. [Google Scholar]
  47. Passegue E, Wagner EF. JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. EMBO J 2000; 19 : 2969–79. [Google Scholar]
  48. Wang W, Wu J, Zhang Z, et al. Characterization of regulation elements on the promoter region of p16INK4a that contribute to overexpression of p16 in senescent fibroblasts. J Biol Chem 2001; 276 : 48655–61. [Google Scholar]
  49. Jacobs JJ, Scheijen B, Voncken JW, et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 1999; 13 : 2678–90. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.