Accès gratuit
Med Sci (Paris)
Volume 22, Numéro 10, Octobre 2006
Page(s) 865 - 871
Section M/S revues
Publié en ligne 15 octobre 2006
  1. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclinD/CDK4. Nature 1993; 366 : 704–7. [Google Scholar]
  2. Wolff B, Naumann M. INK4 cell cycle inhibitors direct transcriptional inactivation of NF-kappaB. Oncogene 1999; 18 : 2663–6. [Google Scholar]
  3. Haas K, Staller P, Geisen C, et al. Mutual requirement of CDK4 and Myc in malignant transformation : evidence for cyclin D1/CDK4 and p16INK4A as upstream regulators of Myc. Oncogene 1997; 10 : 179–92. [Google Scholar]
  4. Serizawa H. Cyclin-dependent kinase inhibitor p16INK4A inhibits phosphorylation of RNA polymerase II by general transcription factor TFIIH. J Biol Chem 1998; 273 : 5427–30. [Google Scholar]
  5. Nobori T, Miura K, Wu DJ, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994; 368 : 753–6. [Google Scholar]
  6. Merlo A, Herman JG, Mao L, et al. 5’pG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1995; 1 : 686–92 [Google Scholar]
  7. Sandig V, Brand K, Herwig S, et al. Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death. Nat Med 1997; 3 : 313–9. [Google Scholar]
  8. Kim M, Katayose Y, Rojanala L, et al. Induction of apoptosis in p16INK4A mutant cell lines by adenovirus-mediated overexpression of p16INK4A protein. Cell Death Differ 2000; 7 : 706–11. [Google Scholar]
  9. Ausserlechner MJ, Obexer P, Geley S, et al. G1 arrest by p16INK4A uncouples growth from cell cycle progression in leukemia cells with deregulated cyclin E and c-Myc expression. Leukemia 2005; 19 : 1051–7. [Google Scholar]
  10. Sharpless NE, DePinho RA. The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev 1999; 9 : 22–30 [Google Scholar]
  11. Hara E, Smith R, Parry D, et al. Regulation of p16CDKN2 expression and its implication for cell immortalization and senescence. Mol Cell Biol 1996; 16 : 859–67 [Google Scholar]
  12. Li Y, Nicolas MA, Shay JW, et al. Transcriptional repression of the D-type cyclin dependent kinase inhibitor p16 by retinoblastoma susceptibility gene product pRb. Cancer Res 1994; 54 : 6078–82. [Google Scholar]
  13. Serrano M, Lin AW, McCurrach ME, et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88 : 593–602. [Google Scholar]
  14. Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53 : ARF-INK4a locus deletion impairs both the pRb and p53 tumor suppression pathways. Cell 1998; 92 : 725–34. [Google Scholar]
  15. Shapiro GI, Edwards CD, Ewen ME, et al. p16ink4a participates in a G1 arrest checkpoint in response to DNA damage. Mol Cell Biol 1998; 18 : 378–87. [Google Scholar]
  16. Krimpenfort P, Quon K.C, Mooi WJ, et al. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 2001; 413 : 83–6. [Google Scholar]
  17. Serrano M, Lee H, Chin L, et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 1996; 85 : 27–37. [Google Scholar]
  18. Brookes S, Rowe J, Ruas M, et al. INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence. EMBO J 2002; 21 : 2936–45. [Google Scholar]
  19. Drayton S, Rowe J, Jones R, et al. Tumor suppressor p16INK4a determines sensitivity of human cells to transformation by cooperating cellular oncogenes. Cancer Cell 2003; 4 : 301–10 [Google Scholar]
  20. Gump J, Stokoe D, McCormick F. Phosphorylation of p16INK4A correlates with Cdk4 association. J Biol Chem 2003; 278 : 6619–22. [Google Scholar]
  21. Mekki Y, Catallo R, Bertrand Y, et al. Enhanced expression of p16ink4a is associated with a poor prognosis in childhood acute lymphoblastic leukemia. Leukemia 1999; 13 : 181–9. [Google Scholar]
  22. Zhu J, Woods D, McMahon M, et al. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 1998; 12 : 2997–3007. [Google Scholar]
  23. Ohtani N, Zebedee Z, Huot TJG, et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 2001; 409 : 1067–70. [Google Scholar]
  24. Ohtani N, Brennan P, Gaubatz S, et al. Epstein-Barr virus LMP1 blocks p16INK4a-pRb pathway by promoting nuclear export of E2F4/5. J Cell Biol 2003; 162 : 173–83. [Google Scholar]
  25. Pagliuca A, Gallo P, De Luca P, et al. Class A helix-loop-helix proteins are positive regulators of several cyclin-dependent kinase inhibitors’ promoter activity and negatively affect cell growth. Cancer Res 2000; 60 : 1376–82 [Google Scholar]
  26. Zheng W, Wang H, Xue L, et al. Regulation of cellular senescence and p16INK4a expression by Id1 and E47 proteins in human diploid fibroblast. J Biol Chem 2004; 279 : 31524–32. [Google Scholar]
  27. Hansson A, Manetopoulos C, Jönsson JI, et al. The basic helix-loop-helix transcription factor TAL1/SCL inhibits the expression of the p16INK4A and pT genes. Biochem Biophys Res Commun 2003; 312 : 1073–81. [Google Scholar]
  28. Hara E, Yamaguchi T, Nojima H, et al. Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J Biol Chem 1994; 269 : 2139–45. [Google Scholar]
  29. Alani RM, Young AZ, Shifflett CB. Id1 regulation of cellular senescence through transcriptional repression of p16/INK4a. Proc Natl Acad Sci USA 2001; 98 : 7812–6. [Google Scholar]
  30. Nickoloff BJ, Chaturvedi V, Bacon P, et al. Id-1 delays senescence but does not immortalize keratinocytes. J Biol Chem 2000; 275 : 27501–4. [Google Scholar]
  31. Tang J, Gordon GM, Nickoloff BJ, et al. The helix-loop-helix protein Id-1 delays onset of replicative senescence in human endothelial cells. Lab Invest 2002; 82 : 1073–9. [Google Scholar]
  32. Polsky D, Young AZ, Busam KJ, et al. The transcriptional repressor of p16INK4a, Id1, is up-regulated in early melanomas. Cancer Res 2001; 61 : 6008–11. [Google Scholar]
  33. Pesce S, Benezra R. The loop region of the helix-loop-helix protein Id1 is critical for its dominant negative activity. Mol Cell Biol 1993; 13 : 7874–80. [Google Scholar]
  34. Jacobs JJL, Kieboom K, Marino S, et al. The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the INK4a locus. Nature 1999; 397 : 164–8. [Google Scholar]
  35. Itahana K, Zou Y, Itahana Y, et al. Control of the replicative life span of human fibroblasts by p16 and polycomb protein Bmi-1. Mol Cell Biol 2003; 23 : 389–401. [Google Scholar]
  36. Dellino GI, Schwartz YB, Farkas G, et al. Polycomb silencing blocks transcription initiation. Mol Cell 2004; 13 : 887–93. [Google Scholar]
  37. Costello JF, Berger MS, Huang HS, et al. Silencing of p16/CDKN2 expression in humain gliomas by methylation and chromatin condensation. Cancer Res 1996; 56 : 2405–10. [Google Scholar]
  38. Fournel M, Sapieha P, Beaulieu N, et al. Down regulation of human DNA-(cytosine-5) methyltransferase induces cell cycle regulators p16INK4a and p21WAF/Cipl by distinct mechanisms. J Biol Chem 1999; 274 : 24250–6. [Google Scholar]
  39. Robert MF, Morin S, Beaulieu N, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 2003; 33 : 61–5. [Google Scholar]
  40. Bachman KE, Park BH, Rhee I, et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer cell 2003; 3 : 89–95. [Google Scholar]
  41. Magdinier F, Wolffe AP. Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia. Proc Natl Acad Sci USA 2001; 98 : 4990–5 [Google Scholar]
  42. Kondo E, Gu Z, Horii A, et al. The Thymine DNA glycosylase MBD4 represses transcription and is associated with methylated p16INK4a and hMLH1 genes. Mol Cell Biol 2005; 25 : 4388–96. [Google Scholar]
  43. Ng HH, Zhang Y, Hendrich B, et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 1999; 23 : 58–61. [Google Scholar]
  44. Myöhänen S, Baylin SB. Sequence-specific DNA binding activity of RNA helicase A to the p16INK4a promoter. J Biol Chem 2001; 276 : 1634–42. [Google Scholar]
  45. Oruetxebarria I, Venturini F, Kekarainen T, et al. p16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cells. J Biol Chem 2004; 279 : 3807–16. [Google Scholar]
  46. Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 2002; 298 : 1039–43. [Google Scholar]
  47. Passegue E, Wagner EF. JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. EMBO J 2000; 19 : 2969–79. [Google Scholar]
  48. Wang W, Wu J, Zhang Z, et al. Characterization of regulation elements on the promoter region of p16INK4a that contribute to overexpression of p16 in senescent fibroblasts. J Biol Chem 2001; 276 : 48655–61. [Google Scholar]
  49. Jacobs JJ, Scheijen B, Voncken JW, et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 1999; 13 : 2678–90. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.