Free Access
Med Sci (Paris)
Volume 22, Number 10, Octobre 2006
Page(s) 837 - 844
Section M/S revues
Published online 15 October 2006
  1. Göppert-Mayer M. Uber elementarakte mit zwei quanten-sprüngen. Ann Phys 1931; 9 : 273–95. [Google Scholar]
  2. Kaiser W, Garrett CGB. Two-photon excitation in CaF2Eu2+. Phys Rev Lett 1961; 7 : 229–31. [Google Scholar]
  3. Peticolas WL, Goldsborough JP, Rieckhoff KE. Double photon excitation in organic crystals. Phys Rev Lett 1963; 10 : 43–5. [Google Scholar]
  4. Sheppard CJR, Kompfner R. Resonant scanning optical microscope. Appl Opt 1978; 17 : 2879–82. [Google Scholar]
  5. Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 1990; 248 : 73–6. [Google Scholar]
  6. Davidovits P, Egger MD. Scanning laser microscope. Nature 1969; 233 : 831. [Google Scholar]
  7. Xu C, Guild J, Webb W, Denk W. Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation. Opt Lett 1995; 20 : 2372. [Google Scholar]
  8. Xu C, Webb WW. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B Optic Physics 1996; 13 : 481. [Google Scholar]
  9. Schilders SP, Gu M. Limiting factors on image quality in imaging through turbid media under single-photon and two-photon excitation. Microsc Microanal 2000; 6 : 156–60. [Google Scholar]
  10. Westphal V, Hell SW. Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 2005; 94 : 143903/1–4. [Google Scholar]
  11. Willig KI, Rizzoli SO, Westphal V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 2006; 440 : 935–9. [Google Scholar]
  12. Hell SW, Lindek S, Cremer C, Stelzer EHK. Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution. Appl Phys Lett 1994; 64 : 1335–7. [Google Scholar]
  13. Hell SW, Dyba M, Jakobs S. Concepts for nanoscale resolution in fluorescence microscopy. Curr Opin Neurol 2004; 14 : 599–609. [Google Scholar]
  14. Varin C, Piché M. Analytical calculation of the longitudinal electric field resulting from the tight focusing of an ultrafast transverse magnetic beam. J Opt Soc Am A 2006 (sous presse). [Google Scholar]
  15. Zipfel W, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotech 2003; 21 : 1369–77. [Google Scholar]
  16. Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods 2005; 2 : 932–40. [Google Scholar]
  17. Wang H, Backus S, Chang Z, et al. Generation of 10-W average-power, 40-TW peak-power, 24-fs pulses from a Ti:sapphire amplifier system. J Opt Soc Am B 1999; 16 : 1790–4. [Google Scholar]
  18. Beaurepaire E, Oheim M, Mertz J. Ultra-deep two-photon fluorescence excitation in turbid media. Opt Commun 2001; 188 : 25–9. [Google Scholar]
  19. Theer P, Hasan MT, Denk W. Two-photon imaging to a depth of 1000 microns in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 2003; 28 : 1022–4. [Google Scholar]
  20. Cognet L, Groc L, Lounis V, Choquet D. Multiple routes for glutamate receptor trafficking: surface diffusion and membrane traffic cooperate to bring receptors to synapses. Sci STKE 2006; 2006 : pe13. [Google Scholar]
  21. Larson DR, Zipfel WR, Williams RM, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003; 300 : 1434–6. [Google Scholar]
  22. Wiseman PW, Squier JA, Ellisman MH, Wilson KR. Two-photon image correlation spectroscopy and image cross-correlation spectroscopy. J Microsc 2000; 200 : 14–25. [Google Scholar]
  23. Mehta AD, Jung JC, Flusberg BA, Schnitzer. Fiber optic in vivo imaging in the mammalian nervous system. Curr Opin Neurobiol 2004; 14 : 1–12. [Google Scholar]
  24. Sakmann B, Neher E. Single-channel recording. New York : Plenum Press, 1995. [Google Scholar]
  25. Yuste R, Denk W. Dentritic spines as basic functional units of neuronal integration. Nature 1995; 375 : 682–4. [Google Scholar]
  26. Oertner T, Sabatini BL, Nimchinsky EA, Svoboda K. Facilitation at single synapses probed with optical quantal analysis. Nat Neurosci 2002; 5 : 657–64. [Google Scholar]
  27. Yasuda R, Nimchinsky EA, Scheuss V, et al. Imaging calcium concentration dynamics in small neuronal compartments. Sci STKE 2004; 2004 : l5. [Google Scholar]
  28. Tsien R, Bacskai B. Video-rate confocal microscopy. In : Palwley JB, ed. Handbook of biological confocal microscopy. New York : Plenum Press, 1995 : 459–78. [Google Scholar]
  29. Salomé R, Kremer Y, Dieudonne S, et al. Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J Neurosci Methods 2006 : 154 :161–74. [Google Scholar]
  30. Stosiek C, Garaschuk O, Holthoff K, Konnerth A. In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 2003; 100 : 7319–24. [Google Scholar]
  31. Cossart R, Aronov D, Yuste R. Attractor dynamics of network UP states in the neocortex. Nature 2003; 423 : 283–8. [Google Scholar]
  32. Cossart R, Ikegaya Y, Yuste R. Calcium imaging of cortical networks dynamics. Cell Calcium 2005; 37 : 451–7. [Google Scholar]
  33. Fittinghoff DN, Wisemann PW, Squier JA. Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy. OSA 2000; 7 : 273–9. [Google Scholar]
  34. Davidson N, Friesem AA, Hasman E. Holographic axilens : high resolution and long focal depth. Opt Lett 1991; 16 : 523–5. [Google Scholar]
  35. Sanyal S, Ghosh A. High focal depth with a quasi-bifocus birefringent lens. Appl Opt 2000; 39 : 2321–5. [Google Scholar]
  36. Dufour P, McCarthy N, De Koninck Y. Imaging of biological tissues: overview of optical configurations for linear and two-photon microscopy. Physics in Canada 2006; 62 : 75–82. [Google Scholar]
  37. Dufour P, Piché M, De Koninck Y, McCarthy N. Two-photon excitation fluorescence microscopy with high depth of field using an axicon. Appl Opt 2006 (sous presse). [Google Scholar]
  38. Wilson BC. Photodynamic therapy. In : Advances in biophotonics. NATO science series. Amsterdam : IOS Press, 2005. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.