Free Access
Med Sci (Paris)
Volume 22, Number 8-9, Août–Septembre 2006
Page(s) 739 - 744
Section M/S revues
Published online 15 August 2006
  1. Snow RW, Guerra CA, Noor AM, et al. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 2005; 434 : 214–7 [Google Scholar]
  2. Kwiatkowski D, Nowak M. Periodic and chaotic host-parasite interactions in human malaria. Proc Natl Acad Sci USA 1991; 88 : 5111–3. [Google Scholar]
  3. Marti M, Good RT, Rug M, et al. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 2004; 306 : 1930–3. [Google Scholar]
  4. Schofield L, Grau GE. Immunological processes in malaria pathogenesis. Nat Rev Immunol 2005; 5 : 722–35. [Google Scholar]
  5. Bruce MC, Day KP. Cross-species regulation of Plasmodium parasitemia in semi-immune children from Papua New Guinea. Trends Parasitol 2003; 19 : 271–7. [Google Scholar]
  6. Favre N, Ryffel B, Bordmann G, et al. The course of Plasmodium chabaudi chabaudi infections in interferon-gamma receptor deficient mice. Parasite Immunol 1997; 19 : 375–83. [Google Scholar]
  7. Stevenson MM, Tam MF, Wolf SF, et al. IL-12-induced protection against blood-stage Plasmodium chabaudi AS requires IFN-gamma and TNF-alpha and occurs via a nitric oxide-dependent mechanism. J Immunol 1995; 155 : 2545–56. [Google Scholar]
  8. De Souza JB, Williamson KH, Otani T, et al. Early gamma interferon responses in lethal and nonlethal murine blood-stage malaria. Infect Immun 1997; 65 : 1593–8. [Google Scholar]
  9. Jacobs P, Radzioch D, Stevenson MM. A Th1-associated increase in tumor necrosis factor alpha expression in the spleen correlates with resistance to blood-stage malaria in mice. Infect Immun 1996; 64 : 535–41. [Google Scholar]
  10. Luty AJ, Lell B, Schmidt-Ott R, et al. Interferon-gamma responses are associated with resistance to reinfection with Plasmodium falciparum in young African children. J Infect Dis 1999; 179 : 980–8. [Google Scholar]
  11. Dodoo D, Omer FM, Todd J, et al. Absolute levels and ratios of proinflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to Plasmodium falciparum malaria. J Infect Dis 2002; 185 : 971–9. [Google Scholar]
  12. Kojima S, Nagamine Y, Hayano M, et al. A potential role of interleukin 18 in severe falciparum malaria. Acta Trop 2004; 89 : 279–84. [Google Scholar]
  13. Perkmann T, Winkler H, Graninger W, et al. Circulating levels of the interleukin (IL)-4 receptor and of IL-18 in patients with Plasmodium falciparum malaria. Cytokine 2005; 29 : 153–8. [Google Scholar]
  14. Nagamine Y, Hayano M, Kashiwamura S, et al. Involvement of interleukin-18 in severe Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 2003; 97 : 236–41. [Google Scholar]
  15. Hermsen CC, Konijnenberg Y, Mulder L, et al. Circulating concentrations of soluble granzyme A and B increase during natural and experimental Plasmodium falciparum infections. Clin Exp Immunol 2003; 132 : 467–72. [Google Scholar]
  16. Scragg IG, Hensmann M, Bate CA, et al. Early cytokine induction by Plasmodium falciparum is not a classical endotoxin-like process. Eur J Immunol 1999; 29 : 2636–44. [Google Scholar]
  17. Artavanis-Tsakonas K, Riley EM. Innate immune response to malaria: rapid induction of IFN-gamma from human NK cells by live Plasmodium falciparum-infected erythrocytes. J Immunol 2002; 169 : 2956–63. [Google Scholar]
  18. Artavanis-Tsakonas K, Eleme K, McQueen KL, et al. Activation of a subset of human NK cells upon contact with Plasmodium falciparum-infected erythrocytes. J Immunol 2003; 171 : 5396–405. [Google Scholar]
  19. Korbel DS, Newman KC, Almeida CR, et al. Heterogeneous human NK cell responses to Plasmodium falciparum-infected erythrocytes. J Immunol 2005; 175 : 7466–73. [Google Scholar]
  20. Baratin M, Roetynck S, Lepolard C, et al. Natural killer cell and macrophage cooperation in MyD88-dependent innate responses to Plasmodium falciparum. Proc Natl Acad Sci USA 2005; 102 : 14747–52. [Google Scholar]
  21. Ferlazzo G, Munz C. NK cell compartments and their activation by dendritic cells. J Immunol 2004; 172 : 1333–9. [Google Scholar]
  22. Stewart CA, Vivier E, Colonna M. Strategies of natural killer cell recognition and signaling. Curr Top Microbiol Immunol 2006; 298 : 1–21. [Google Scholar]
  23. Imai K, Matsuyama S, Miyake S, et al. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 2000; 356 : 1795–9. [Google Scholar]
  24. Zitvogel L, Terme M, Borg C, et al. Dendritic cell-NK cell cross-talk: regulation and physiopathology. Curr Top Microbiol Immunol 2006; 298 : 157–74. [Google Scholar]
  25. Bottino C, Moretta L, Moretta A. NK cell activating receptors and tumor recognition in humans. Curr Top Microbiol Immunol 2006; 298 : 175–82. [Google Scholar]
  26. Orago AS, Facer CA. Cytotoxicity of human natural killer (NK) cell subsets for Plasmodium falciparum erythrocytic schizonts: stimulation by cytokines and inhibition by neomycin. Clin Exp Immunol 1991; 86 : 22–9. [Google Scholar]
  27. Mavoungou E, Luty AJ, Kremsner PG. Natural killer (NK) cell-mediated cytolysis of Plasmodium falciparum-infected human red blood cells in vitro. Eur Cytokine Netw 2003; 14 : 134–42. [Google Scholar]
  28. Rubio V, Stuge TB, Singh N, et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 2003; 9 : 1377–82. [Google Scholar]
  29. Alter G, Malenfant JM, Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 2004; 294 : 15–22. [Google Scholar]
  30. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol 2001; 22 : 633–40. [Google Scholar]
  31. Stevenson MM, Riley EM. Innate immunity to malaria. Nat Rev Immunol 2004; 4 : 169–80. [Google Scholar]
  32. Pichyangkul S, Yongvanitchit K, Kum-arb U, et al. Malaria blood stage parasites activate human plasmacytoid dendritic cells and murine dendritic cells through a Toll-like receptor 9-dependent pathway. J Immunol 2004; 172 : 4926–33. [Google Scholar]
  33. Urban BC, Ing R, Stevenson MM. Early interactions between blood-stage plasmodium parasites and the immune system. Curr Top Microbiol Immunol 2005; 297 : 25–70. [Google Scholar]
  34. Stevenson MM, Urban BC. Antigen presentation and dendritic cell biology in malaria. Parasite Immunol 2006; 28 : 5–14. [Google Scholar]
  35. Behr C, Poupot R, Peyrat MA, et al. Plasmodium falciparum stimuli for human gammadelta T cells are related to phosphorylated antigens of mycobacteria. Infect Immun 1996; 64 : 2892–6. [Google Scholar]
  36. Fournie JJ, Bonneville M. Stimulation of gamma delta T cells by phosphoantigens. Res Immunol 1996; 147 : 338–47. [Google Scholar]
  37. Farouk SE, Mincheva-Nilsson L, Krensky AM, et al. Gamma delta T cells inhibit in vitro growth of the asexual blood stages of Plasmodium falciparum by a granule exocytosis-dependent cytotoxic pathway that requires granulysin. Eur J Immunol 2004; 34 : 2248–56. [Google Scholar]
  38. Krishnegowda G, Hajjar AM, Zhu J, et al. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem 2005; 280 : 8606–16. [Google Scholar]
  39. Zhu J, Krishnegowda G, Gowda DC. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: the requirement of extracellular signal-regulated kinase, p38, c-jun n-terminal kinase and nf-{kappa}b pathways for the expression of proinflammatory cytokines and nitric oxide. J Biol Chem 2005; 280 : 8617–27. [Google Scholar]
  40. Moretta A. The dialogue between human natural killer cells and dendritic cells. Curr Opin Immunol 2005; 17 : 306–11. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.