Free Access
Med Sci (Paris)
Volume 22, Number 8-9, Août–Septembre 2006
Page(s) 727 - 732
Section M/S revues
Published online 15 August 2006
  1. Janeway C. Immunobiology : the immune system in health and disease, 6th ed. New York : Garland Science, 2005. [Google Scholar]
  2. Shastri N, Schwab S, Serwold T. Producing nature’s gene-chips : the generation of peptides for display by MHC class I molecules. Annu Rev Immunol 2002; 20 : 463–93. [Google Scholar]
  3. Saveanu L, Carroll O, Hassainya Y, van Endert P. Complexity, contradictions, and conundrums : studying post-proteasomal proteolysis in HLA class I antigen presentation. Immunol Rev 2005; 207 : 42–59. [Google Scholar]
  4. Wilson NS, Villadangos JA. Regulation of antigen presentation and cross-presentation in the dendritic cell network : facts, hypothesis, and immunological implications. Adv Immunol 2005; 86 : 241–305. [Google Scholar]
  5. Ciechanover A. Proteolysis : from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 2005; 6 : 79–87. [Google Scholar]
  6. Baumeister W, Walz J, Zuhl F, Seemuller E. The proteasome : paradigm of a self-compartmentalizing protease. Cell 1998; 92 : 367–80. [Google Scholar]
  7. Meusser B, Hirsch C, Jarosch E, Sommer T. ERAD : the long road to destruction. Nat Cell Biol 2005; 7 : 766–72. [Google Scholar]
  8. Yewdell J. To DRiP or not to DRiP : generating peptide ligands for MHC class I molecules from biosynthesized proteins. Mol Immunol 2002; 39 : 139–46. [Google Scholar]
  9. Vabulas RM, Hartl FU. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 2005; 310 : 1960–3. [Google Scholar]
  10. Fruci D, Lauvau G, Saveanu L, et al. Quantifying recruitment of cytosolic peptides for HLA class I presentation : impact of TAP transport. J Immunol 2003; 170 : 2977–84. [Google Scholar]
  11. Princiotta MF, Finzi D, Qian SB, et al. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 2003; 18 : 343–54. [Google Scholar]
  12. Schwab SR, Shugart JA, Horng T, et al. Unanticipated antigens : translation initiation at CUG with leucine. PLoS Biol 2004; 2 : e366. [Google Scholar]
  13. Vigneron N, Stroobant V, Chapiro J, et al. An antigenic peptide produced by peptide splicing in the proteasome. Science 2004; 304 : 587–90. [Google Scholar]
  14. Ciechanover A. The ubiquitin-proteasome pathway : on protein death and cell life. EMBO J 1998; 17 : 7151–60. [Google Scholar]
  15. Kloetzel PM. Generation of major histocompatibility complex class I antigens : functional interplay between proteasomes and TPPII. Nat Immunol 2004; 5 : 661–9. [Google Scholar]
  16. Kisselev AF, Akopian TN, Woo KM, Goldberg AL. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 1999; 274 : 3363–71. [Google Scholar]
  17. Reits E, Neijssen J, Herberts C, et al. A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation. Immunity 2004; 20 : 495–506. [Google Scholar]
  18. Saric T, Graef CI, Goldberg AL. Pathway for degradation of peptides generated by proteasomes : a key role for thimet oligopeptidase and other metallopeptidases. J Biol Chem 2004; 279 : 46723–32. [Google Scholar]
  19. Srivastava PK, Udono H, Blachere NE, Li Z. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 1994; 39 : 93–8. [Google Scholar]
  20. van Endert PM, Saveanu L, Hewitt EW, Lehner P. Powering the peptide pump : TAP crosstalk with energetic nucleotides. Trends Biochem Sci 2002; 27 : 454–61. [Google Scholar]
  21. Momburg F, Neefjes JJ, Hämmerling G. Peptide selection by MHC-encoded TAP transporters. Curr Opin Immunol 1994; 6 : 32–7. [Google Scholar]
  22. Van Endert PM, Riganelli D, Greco G, et al. The peptide-binding motif for the human transporter associated with antigen processing. J Exp Med 1995; 182 : 1883–95. [Google Scholar]
  23. Rock KL, York IA, Goldberg AL. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat Immunol 2004; 5 : 670–7. [Google Scholar]
  24. Saveanu L, Carroll O, Lindo V, et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat Immunol 2005; 6 : 689–97. [Google Scholar]
  25. Chang SC, Momburg F, Bhutani N, Goldberg AL. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a « molecular ruler » mechanism. Proc Natl Acad Sci USA 2005; 102 : 17107–12. [Google Scholar]
  26. Cresswell P, Bangia N, Dick T, Diedrich G. The nature of the MHC class I peptide loading complex. Immunol Rev 1999; 172 : 21–8. [Google Scholar]
  27. Saveanu L, van Endert P. Dendritic cells : open for presentation business. Nat Immunol 2005; 6 : 7–8. [Google Scholar]
  28. Desjardins M. ER-mediated phagocytosis : a new membrane for new functions. Nat Rev Immunol 2003; 3 : 280–91. [Google Scholar]
  29. Touret N, Paroutis P, Terebiznik M, et al. Quantitative and dynamic assessment of the contribution of the ER to phagosome formation. Cell 2005; 123 : 157–70. [Google Scholar]
  30. Lizee G, Basha G, Tiong J, et al. Control of dendritic cell cross-presentation by the major histocompatibility complex class I cytoplasmic domain. Nat Immunol 2003; 4 : 1065–73. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.