Free Access
Issue
Med Sci (Paris)
Volume 22, Number 6-7, Juin-Juillet 2006
Page(s) 614 - 620
Section M/S revues
DOI https://doi.org/10.1051/medsci/20062267614
Published online 15 June 2006
  1. Tanner A, Kent R, Maiden MF, Taubman MA. Clinical, microbiological and immunological profile of healthy, gingivitis and putative active periodontal subjects. J Periodontal Res 1996; 31 : 195–204. [Google Scholar]
  2. Schletter J, Heine H, Ulmer AJ, Rietschel ET. Molecular mechanisms of endotoxin activity. Arch Microbiol 1995; 164 : 383–9. [Google Scholar]
  3. Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 1995; 13 : 437–57. [Google Scholar]
  4. Chaudhary PM, Ferguson C, Nguyen V, et al. Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4 : evidence for a multi-gene receptor family in humans. Blood 1998; 91 : 4020–7. [Google Scholar]
  5. Chow JC, Young DW, Golenbock DT, et al. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999; 274 : 10689–92. [Google Scholar]
  6. Nagasawa T, Kobayashi H, Kiji M, et al. LPS-stimulated human gingival fibroblasts inhibit the differentiation of monocytes into osteoclasts through the production of osteoprotegerin. Clin Exp Immunol 2002; 130 : 338–44. [Google Scholar]
  7. Baker PJ, Dixon M, Evans RT, et al. CD4+ T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect Immun 1999; 67 : 2804–9. [Google Scholar]
  8. Matsuki Y, Yamamoto T, Hara K. Interleukin-1 mRNA-expressing macrophages in human chronically inflamed gingival tissues. Am J Pathol 1991; 138 : 1299–305. [Google Scholar]
  9. Pinner RW, Teutsch SM, Simonsen L, et al. Trends in infectious diseases mortality in the United States. JAMA 1996; 275 : 189–93. [Google Scholar]
  10. Kikuchi T, Matsuguchi T, Tsuboi N, et al. Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors. J Immunol 2001; 166 : 3574–9. [Google Scholar]
  11. Kong YY, Boyle WJ, Penninger JM. Osteoprotegerin ligand : a common link between osteoclastogenesis, lymph node formation and lymphocyte development. Immunol Cell Biol 1999; 77 : 188–93. [Google Scholar]
  12. Kawai T, Eisen-Lev R, Seki M, et al. Requirement of B7 costimulation for Th1-mediated inflammatory bone resorption in experimental periodontal disease. J Immunol 2000; 164 : 2102–9. [Google Scholar]
  13. Josien R, Wong BR, Li HL, et al. TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol 1999; 162 : 2562–8. [Google Scholar]
  14. Taubman MA, Kawai T. Involvement of T-lymphocytes in periodontal disease and in direct and indirect induction of bone resorption. Crit Rev Oral Biol Med 2001; 12 : 125–35. [Google Scholar]
  15. Verhasselt V, Buelens C, Willems F, et al. Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells : evidence for a soluble CD14-dependent pathway. J Immunol 1997; 158 : 2919–25. [Google Scholar]
  16. Bell. RANK Ligand and the regulation of skeletal remodeling. J Clin Invest 2003; 111 : 1120–2 [Google Scholar]
  17. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998; 95 : 3597–602. [Google Scholar]
  18. Kobayashi K, Takahashi N, Jimi E, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 2000; 191 : 275–86. [Google Scholar]
  19. Hofbauer LC, Lacey DL, Dunstan CR, et al. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 1999; 25 : 255–9. [Google Scholar]
  20. Perkins SL, Kling SJ. Local concentrations of macrophage colony-stimulating factor mediate osteoclastic differentiation. Am J Physiol 1995; 269 : E1024–30. [Google Scholar]
  21. Zou W, Bar-Shavit Z. Dual modulation of osteoclast differentiation by lipopolysaccharide. J Bone Miner Res 2002; 17 : 1211–8. [Google Scholar]
  22. Takami M, Woo JT, Nagai K. Requirement of osteoblastic cells for the fusion of osteoclasts. J Bone Miner Metab 1998; 16 : 151–7. [Google Scholar]
  23. Tani-Ishii N, Tsunoda A, Teranaka T, Umemoto T. Autocrine regulation of osteoclast formation and bone resorption by IL-1 alpha and TNF alpha. J Dent Res 1999; 78 : 1617–23. [Google Scholar]
  24. Jimi E, Akiyama S, Tsurukai T, et al. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J Immunol 1999; 163 : 434–42. [Google Scholar]
  25. Itoh K, Udagawa N, Kobayashi K, et al. Lipopolysaccharide promotes the survival of osteoclasts via Toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages. J Immunol 2003; 170 : 3688–95. [Google Scholar]
  26. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93 : 165–76 [Google Scholar]
  27. Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999; 11 : 443–51. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.