Accès gratuit
Numéro
Med Sci (Paris)
Volume 22, Numéro 6-7, Juin-Juillet 2006
Page(s) 614 - 620
Section M/S revues
DOI https://doi.org/10.1051/medsci/20062267614
Publié en ligne 15 juin 2006
  1. Tanner A, Kent R, Maiden MF, Taubman MA. Clinical, microbiological and immunological profile of healthy, gingivitis and putative active periodontal subjects. J Periodontal Res 1996; 31 : 195–204. [Google Scholar]
  2. Schletter J, Heine H, Ulmer AJ, Rietschel ET. Molecular mechanisms of endotoxin activity. Arch Microbiol 1995; 164 : 383–9. [Google Scholar]
  3. Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 1995; 13 : 437–57. [Google Scholar]
  4. Chaudhary PM, Ferguson C, Nguyen V, et al. Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4 : evidence for a multi-gene receptor family in humans. Blood 1998; 91 : 4020–7. [Google Scholar]
  5. Chow JC, Young DW, Golenbock DT, et al. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999; 274 : 10689–92. [Google Scholar]
  6. Nagasawa T, Kobayashi H, Kiji M, et al. LPS-stimulated human gingival fibroblasts inhibit the differentiation of monocytes into osteoclasts through the production of osteoprotegerin. Clin Exp Immunol 2002; 130 : 338–44. [Google Scholar]
  7. Baker PJ, Dixon M, Evans RT, et al. CD4+ T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect Immun 1999; 67 : 2804–9. [Google Scholar]
  8. Matsuki Y, Yamamoto T, Hara K. Interleukin-1 mRNA-expressing macrophages in human chronically inflamed gingival tissues. Am J Pathol 1991; 138 : 1299–305. [Google Scholar]
  9. Pinner RW, Teutsch SM, Simonsen L, et al. Trends in infectious diseases mortality in the United States. JAMA 1996; 275 : 189–93. [Google Scholar]
  10. Kikuchi T, Matsuguchi T, Tsuboi N, et al. Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors. J Immunol 2001; 166 : 3574–9. [Google Scholar]
  11. Kong YY, Boyle WJ, Penninger JM. Osteoprotegerin ligand : a common link between osteoclastogenesis, lymph node formation and lymphocyte development. Immunol Cell Biol 1999; 77 : 188–93. [Google Scholar]
  12. Kawai T, Eisen-Lev R, Seki M, et al. Requirement of B7 costimulation for Th1-mediated inflammatory bone resorption in experimental periodontal disease. J Immunol 2000; 164 : 2102–9. [Google Scholar]
  13. Josien R, Wong BR, Li HL, et al. TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol 1999; 162 : 2562–8. [Google Scholar]
  14. Taubman MA, Kawai T. Involvement of T-lymphocytes in periodontal disease and in direct and indirect induction of bone resorption. Crit Rev Oral Biol Med 2001; 12 : 125–35. [Google Scholar]
  15. Verhasselt V, Buelens C, Willems F, et al. Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells : evidence for a soluble CD14-dependent pathway. J Immunol 1997; 158 : 2919–25. [Google Scholar]
  16. Bell. RANK Ligand and the regulation of skeletal remodeling. J Clin Invest 2003; 111 : 1120–2 [Google Scholar]
  17. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998; 95 : 3597–602. [Google Scholar]
  18. Kobayashi K, Takahashi N, Jimi E, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 2000; 191 : 275–86. [Google Scholar]
  19. Hofbauer LC, Lacey DL, Dunstan CR, et al. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 1999; 25 : 255–9. [Google Scholar]
  20. Perkins SL, Kling SJ. Local concentrations of macrophage colony-stimulating factor mediate osteoclastic differentiation. Am J Physiol 1995; 269 : E1024–30. [Google Scholar]
  21. Zou W, Bar-Shavit Z. Dual modulation of osteoclast differentiation by lipopolysaccharide. J Bone Miner Res 2002; 17 : 1211–8. [Google Scholar]
  22. Takami M, Woo JT, Nagai K. Requirement of osteoblastic cells for the fusion of osteoclasts. J Bone Miner Metab 1998; 16 : 151–7. [Google Scholar]
  23. Tani-Ishii N, Tsunoda A, Teranaka T, Umemoto T. Autocrine regulation of osteoclast formation and bone resorption by IL-1 alpha and TNF alpha. J Dent Res 1999; 78 : 1617–23. [Google Scholar]
  24. Jimi E, Akiyama S, Tsurukai T, et al. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J Immunol 1999; 163 : 434–42. [Google Scholar]
  25. Itoh K, Udagawa N, Kobayashi K, et al. Lipopolysaccharide promotes the survival of osteoclasts via Toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages. J Immunol 2003; 170 : 3688–95. [Google Scholar]
  26. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93 : 165–76 [Google Scholar]
  27. Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999; 11 : 443–51. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.