Free Access
Med Sci (Paris)
Volume 22, Number 4, Avril 2006
Page(s) 396 - 404
Section M/S revues
Published online 15 April 2006
  1. Craig AD. A new view of pain as a homeostatic emotion. Trends Neurosci 2003; 26 : 303–7. [Google Scholar]
  2. Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature 2001; 413 : 203–10. [Google Scholar]
  3. Craig AD. Pain mechanisms : labeled lines versus convergence in central processing. Annu Rev Neurosci 2003; 26 : 1–30. [Google Scholar]
  4. McCleskey EW, Gold MS. Ion channels of nociception. Annu Rev Physiol 1999; 61 : 835–56. [Google Scholar]
  5. Meir A, Ginsburg S, Butkevich A, et al. Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev 1999; 79 : 1019–88. [Google Scholar]
  6. Ertel EA, Campbell KP, Harpold MM, et al. Nomenclature of voltage-gated calcium channels. Neuron 2000; 25 : 533–5. [Google Scholar]
  7. Hatakeyama S, Wakamori M, Ino M, et al. Differential nociceptive responses in mice lacking the alpha(1δ) subunit of N-type Ca2+ channels. Neuroreport 2001; 12 : 2423–7. [Google Scholar]
  8. Saegusa H, Kurihara T, Zong S, et al. Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J 2001; 20 : 2349–56. [Google Scholar]
  9. Kerr LM, Yoshikami D. A venom peptide with a novel presynaptic blocking action. Nature 1984; 308 : 282–4. [Google Scholar]
  10. Olivera BM, Cruz LJ, de Santos V, et al. Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using omega-conotoxin from Conus magus venom. Biochemistry 1987; 26 : 2086–90. [Google Scholar]
  11. Malmberg AB, Yaksh TL. Effect of continuous intrathecal infusion of omega-conopeptides, N-type calcium-channel blockers, on behavior and antinociception in the formalin and hot-plate tests in rats. Pain 1995; 60 : 83–90. [Google Scholar]
  12. Chaplan SR, Pogrel JW, Yaksh TL. Role of voltage-dependent calcium channel subtypes in experimental tactile allodynia. J Pharmacol Exp Ther 1994; 269 : 1117–23. [Google Scholar]
  13. Staats PS, Yearwood T, Charapata SG, et al. Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS : a randomized controlled trial. JAMA 2004; 291 : 63–70. [Google Scholar]
  14. Penn RD, Paice JA. Adverse effects associated with the intrathecal administration of ziconotide. Pain 2000; 85 : 291–6. [Google Scholar]
  15. Adams DJ, Smith AB, Schroeder CI, et al. Omega-conotoxin CVID inhibits a pharmacologically distinct voltage-sensitive calcium channel associated with transmitter release from preganglionic nerve terminals. J Biol Chem 2003; 278 : 4057–62. [Google Scholar]
  16. Smith MT, Cabot PJ, Ross FB, et al. The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. Pain 2002; 96 : 119–27. [Google Scholar]
  17. Blake DW, Scott DA, Angus JA, Wright CE. Synergy between intrathecal omega-conotoxin CVID and dexmedetomidine to attenuate mechanical hypersensitivity in the rat. Eur J Pharmacol 2005; 506 : 221–7. [Google Scholar]
  18. Seko T, Kato M, Kohno H, et al. Structure-activity study of L-cysteine-based N-type calcium channel blockers : optimization of N- and C-terminal substituents. Bioorg Med Chem Lett 2002; 12 : 915–8. [Google Scholar]
  19. Teodori E, Baldi E, Dei S, et al. Design, synthesis, and preliminary pharmacological evaluation of 4-aminopiperidine derivatives as N-type calcium channel blockers active on pain and neuropathic pain. J Med Chem 2004; 47 : 6070–81. [Google Scholar]
  20. Bell TJ, Thaler C, Castiglioni AJ, et al. Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 2004; 41 : 127–38. [Google Scholar]
  21. Seward E, Hammond C, Henderson G. Mu-opioid-receptor-mediated inhibition of the N-type calcium-channel current. Proc Biol Sci 1991; 244 : 129–35. [Google Scholar]
  22. De Waard M, Liu H, Walker D, et al. Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature 1997; 385 : 446–50. [Google Scholar]
  23. Zamponi GW, Bourinet E, Nelson D, et al. Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature 1997; 385 : 442–6. [Google Scholar]
  24. Marker CL, Lujan R, Loh HH, Wickman K. Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of mu- and delta- but not kappa-opioids. J Neurosci 2005; 25 : 3551–9. [Google Scholar]
  25. Wise A, Gearing K, Rees S. Target validation of G-protein coupled receptors. Drug Discov Today 2002; 7 : 235–46. [Google Scholar]
  26. Meunier JC. Nociceptin/orphanin FQ and the opioid receptor-like ORL1 receptor. Eur J Pharmacol 1997; 340 : 1–15. [Google Scholar]
  27. Beedle AM, McRory JE, Poirot O, et al. Agonist-independent modulation of N-type calcium channels by ORL1 receptors. Nat Neurosci 2004; 7 : 118–25. [Google Scholar]
  28. Ophoff RA, Terwindt GM, Vergouwe MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996; 87 : 543–52. [Google Scholar]
  29. Pietrobon D, Striessnig J. Neurobiology of migraine. Nat Rev Neurosci 2003; 4 : 386–98. [Google Scholar]
  30. Yokoyama K, Kurihara T, Saegusa H, et al. Blocking the R-type (Cav2.3) Ca2+ channel enhanced morphine analgesia and reduced morphine tolerance. Eur J Neurosci 2004; 20 : 3516–9. [Google Scholar]
  31. Saegusa H, Kurihara T, Zong S, et al. Altered pain responses in mice lacking alpha 1E subunit of the voltage-dependent Ca2+ channel. Proc Natl Acad Sci USA 2000; 97 : 6132–7. [Google Scholar]
  32. Todorovic SM, Pathirathna S, Meyenburg A, Jevtovic-Todorovic V. Mechanical and thermal anti-nociception in rats after systemic administration of verapamil. Neurosci Lett 2004; 360 : 57–60. [Google Scholar]
  33. Murakami M, Fleischmann B, De Felipe C, et al. Pain perception in mice lacking the beta3 subunit of voltage-activated calcium channels. J Biol Chem 2002; 277 : 40342–51. [Google Scholar]
  34. Bichet D, Cornet V, Geib S, et al. The I-II loop of the Ca2+ channel alpha1 subunit contains an endoplasmic reticulum retention signal antagonized by the beta subunit. Neuron 2000; 25 : 177–90. [Google Scholar]
  35. Cuchillo-Ibanez I, Aldea M, Brocard J, et al. Inhibition of voltage-gated calcium channels by sequestration of beta subunits. Biochem Biophys Res Commun 2003; 311 : 1000–7. [Google Scholar]
  36. Newton RA, Bingham S, Case PC, et al. Dorsal root ganglion neurons show increased expression of the calcium channel alpha2delta-1 subunit following partial sciatic nerve injury. Brain Res Mol Brain Res 2001; 95 : 1–8. [Google Scholar]
  37. Luo ZD, Chaplan SR, Higuera ES, et al. Upregulation of dorsal root ganglion (alpha)2(delta) calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J Neurosci 2001; 21 : 1868–75. [Google Scholar]
  38. Li CY, Song YH, Higuera ES, Luo ZD. Spinal dorsal horn calcium channel alpha2delta-1 subunit upregulation contributes to peripheral nerve injury-induced tactile allodynia. J Neurosci 2004; 24 : 8494–9. [Google Scholar]
  39. Todorovic SM, Meyenburg A, Jevtovic-Todorovic V. Mechanical and thermal antinociception in rats following systemic administration of mibefradil, a T-type calcium channel blocker. Brain Res 2002; 951 : 336–40. [Google Scholar]
  40. Dogrul A, Gardell LR, Ossipov MH, et al. Reversal of experimental neuropathic pain by T-type calcium channel blockers. Pain 2003; 105 : 159–68. [Google Scholar]
  41. Flatters SJ, Bennett GJ. Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 2004; 109 : 150–61. [Google Scholar]
  42. Todorovic SM, Pathirathna S, Brimelow BC, et al. 5beta-reduced neuroactive steroids are novel voltage-dependent blockers of T-type Ca2+ channels in rat sensory neurons in vitro and potent peripheral analgesics in vivo. Mol Pharmacol 2004; 66 : 1223–35. [Google Scholar]
  43. Todorovic SM, Meyenburg A, Jevtovic-Todorovic V. Redox modulation of peripheral T-type Ca2+ channels in vivo : alteration of nerve injury-induced thermal hyperalgesia. Pain 2004; 109 : 328–39. [Google Scholar]
  44. Bourinet E, Alloui A, Monteil A, et al. Silencing of the Ca(v)3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 2005; 24 : 315–24. [Google Scholar]
  45. Burian M, Geisslinger G. COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites. Pharmacol Ther 2005; 107 : 139–54. [Google Scholar]
  46. Coluzzi F, Mattia C. Mechanism-based treatment in chronic neuropathic pain : the role of antidepressants. Curr Pharm Des 2005; 11 : 2945–60. [Google Scholar]
  47. Eglen RM, Hunter JC, Dray A. Ions in the fire : recent ion-channel research and approaches to pain therapy. Trends Pharmacol Sci 1999; 20 : 337–42. [Google Scholar]
  48. Jarvis MF, Burgard EC, McGaraughty S, et al. A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci USA 2002; 99 : 17179–84. [Google Scholar]
  49. Vyklicky L, Knotkova-Urbancova H, Vitaskova Z, et al. Inflammatory mediators at acidic pH activate capsaicin receptors in cultured sensory neurons from newborn rats. J Neurophysiol 1998; 79 : 670–6. [Google Scholar]
  50. Voilley N. Acid-sensing ion channels (ASICs) : new targets for the analgesic effects of non-steroid anti-inflammatory drugs (NSAIDs). Curr Drug Targets Inflamm Allergy 2004; 3 : 71–9. [Google Scholar]
  51. Wilson JA, Garry EM, Anderson HA, et al. NMDA receptor antagonist treatment at the time of nerve injury prevents injury-induced changes in spinal NR1 and NR2B subunit expression and increases the sensitivity of residual pain behaviours to subsequently administered NMDA receptor antagonists. Pain 2005; 117 : 421–32. [Google Scholar]
  52. Lossignol DA, Obiols-Portis M, Body JJ. Successful use of ketamine for intractable cancer pain. Support Care Cancer 2005; 13 : 188–93. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.