Accès gratuit
Med Sci (Paris)
Volume 22, Numéro 4, Avril 2006
Page(s) 396 - 404
Section M/S revues
Publié en ligne 15 avril 2006
  1. Craig AD. A new view of pain as a homeostatic emotion. Trends Neurosci 2003; 26 : 303–7.
  2. Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature 2001; 413 : 203–10.
  3. Craig AD. Pain mechanisms : labeled lines versus convergence in central processing. Annu Rev Neurosci 2003; 26 : 1–30.
  4. McCleskey EW, Gold MS. Ion channels of nociception. Annu Rev Physiol 1999; 61 : 835–56.
  5. Meir A, Ginsburg S, Butkevich A, et al. Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev 1999; 79 : 1019–88.
  6. Ertel EA, Campbell KP, Harpold MM, et al. Nomenclature of voltage-gated calcium channels. Neuron 2000; 25 : 533–5.
  7. Hatakeyama S, Wakamori M, Ino M, et al. Differential nociceptive responses in mice lacking the alpha(1δ) subunit of N-type Ca2+ channels. Neuroreport 2001; 12 : 2423–7.
  8. Saegusa H, Kurihara T, Zong S, et al. Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J 2001; 20 : 2349–56.
  9. Kerr LM, Yoshikami D. A venom peptide with a novel presynaptic blocking action. Nature 1984; 308 : 282–4.
  10. Olivera BM, Cruz LJ, de Santos V, et al. Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using omega-conotoxin from Conus magus venom. Biochemistry 1987; 26 : 2086–90.
  11. Malmberg AB, Yaksh TL. Effect of continuous intrathecal infusion of omega-conopeptides, N-type calcium-channel blockers, on behavior and antinociception in the formalin and hot-plate tests in rats. Pain 1995; 60 : 83–90.
  12. Chaplan SR, Pogrel JW, Yaksh TL. Role of voltage-dependent calcium channel subtypes in experimental tactile allodynia. J Pharmacol Exp Ther 1994; 269 : 1117–23.
  13. Staats PS, Yearwood T, Charapata SG, et al. Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS : a randomized controlled trial. JAMA 2004; 291 : 63–70.
  14. Penn RD, Paice JA. Adverse effects associated with the intrathecal administration of ziconotide. Pain 2000; 85 : 291–6.
  15. Adams DJ, Smith AB, Schroeder CI, et al. Omega-conotoxin CVID inhibits a pharmacologically distinct voltage-sensitive calcium channel associated with transmitter release from preganglionic nerve terminals. J Biol Chem 2003; 278 : 4057–62.
  16. Smith MT, Cabot PJ, Ross FB, et al. The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. Pain 2002; 96 : 119–27.
  17. Blake DW, Scott DA, Angus JA, Wright CE. Synergy between intrathecal omega-conotoxin CVID and dexmedetomidine to attenuate mechanical hypersensitivity in the rat. Eur J Pharmacol 2005; 506 : 221–7.
  18. Seko T, Kato M, Kohno H, et al. Structure-activity study of L-cysteine-based N-type calcium channel blockers : optimization of N- and C-terminal substituents. Bioorg Med Chem Lett 2002; 12 : 915–8.
  19. Teodori E, Baldi E, Dei S, et al. Design, synthesis, and preliminary pharmacological evaluation of 4-aminopiperidine derivatives as N-type calcium channel blockers active on pain and neuropathic pain. J Med Chem 2004; 47 : 6070–81.
  20. Bell TJ, Thaler C, Castiglioni AJ, et al. Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 2004; 41 : 127–38.
  21. Seward E, Hammond C, Henderson G. Mu-opioid-receptor-mediated inhibition of the N-type calcium-channel current. Proc Biol Sci 1991; 244 : 129–35.
  22. De Waard M, Liu H, Walker D, et al. Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature 1997; 385 : 446–50.
  23. Zamponi GW, Bourinet E, Nelson D, et al. Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature 1997; 385 : 442–6.
  24. Marker CL, Lujan R, Loh HH, Wickman K. Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of mu- and delta- but not kappa-opioids. J Neurosci 2005; 25 : 3551–9.
  25. Wise A, Gearing K, Rees S. Target validation of G-protein coupled receptors. Drug Discov Today 2002; 7 : 235–46.
  26. Meunier JC. Nociceptin/orphanin FQ and the opioid receptor-like ORL1 receptor. Eur J Pharmacol 1997; 340 : 1–15.
  27. Beedle AM, McRory JE, Poirot O, et al. Agonist-independent modulation of N-type calcium channels by ORL1 receptors. Nat Neurosci 2004; 7 : 118–25.
  28. Ophoff RA, Terwindt GM, Vergouwe MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996; 87 : 543–52.
  29. Pietrobon D, Striessnig J. Neurobiology of migraine. Nat Rev Neurosci 2003; 4 : 386–98.
  30. Yokoyama K, Kurihara T, Saegusa H, et al. Blocking the R-type (Cav2.3) Ca2+ channel enhanced morphine analgesia and reduced morphine tolerance. Eur J Neurosci 2004; 20 : 3516–9.
  31. Saegusa H, Kurihara T, Zong S, et al. Altered pain responses in mice lacking alpha 1E subunit of the voltage-dependent Ca2+ channel. Proc Natl Acad Sci USA 2000; 97 : 6132–7.
  32. Todorovic SM, Pathirathna S, Meyenburg A, Jevtovic-Todorovic V. Mechanical and thermal anti-nociception in rats after systemic administration of verapamil. Neurosci Lett 2004; 360 : 57–60.
  33. Murakami M, Fleischmann B, De Felipe C, et al. Pain perception in mice lacking the beta3 subunit of voltage-activated calcium channels. J Biol Chem 2002; 277 : 40342–51.
  34. Bichet D, Cornet V, Geib S, et al. The I-II loop of the Ca2+ channel alpha1 subunit contains an endoplasmic reticulum retention signal antagonized by the beta subunit. Neuron 2000; 25 : 177–90.
  35. Cuchillo-Ibanez I, Aldea M, Brocard J, et al. Inhibition of voltage-gated calcium channels by sequestration of beta subunits. Biochem Biophys Res Commun 2003; 311 : 1000–7.
  36. Newton RA, Bingham S, Case PC, et al. Dorsal root ganglion neurons show increased expression of the calcium channel alpha2delta-1 subunit following partial sciatic nerve injury. Brain Res Mol Brain Res 2001; 95 : 1–8.
  37. Luo ZD, Chaplan SR, Higuera ES, et al. Upregulation of dorsal root ganglion (alpha)2(delta) calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J Neurosci 2001; 21 : 1868–75.
  38. Li CY, Song YH, Higuera ES, Luo ZD. Spinal dorsal horn calcium channel alpha2delta-1 subunit upregulation contributes to peripheral nerve injury-induced tactile allodynia. J Neurosci 2004; 24 : 8494–9.
  39. Todorovic SM, Meyenburg A, Jevtovic-Todorovic V. Mechanical and thermal antinociception in rats following systemic administration of mibefradil, a T-type calcium channel blocker. Brain Res 2002; 951 : 336–40.
  40. Dogrul A, Gardell LR, Ossipov MH, et al. Reversal of experimental neuropathic pain by T-type calcium channel blockers. Pain 2003; 105 : 159–68.
  41. Flatters SJ, Bennett GJ. Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 2004; 109 : 150–61.
  42. Todorovic SM, Pathirathna S, Brimelow BC, et al. 5beta-reduced neuroactive steroids are novel voltage-dependent blockers of T-type Ca2+ channels in rat sensory neurons in vitro and potent peripheral analgesics in vivo. Mol Pharmacol 2004; 66 : 1223–35.
  43. Todorovic SM, Meyenburg A, Jevtovic-Todorovic V. Redox modulation of peripheral T-type Ca2+ channels in vivo : alteration of nerve injury-induced thermal hyperalgesia. Pain 2004; 109 : 328–39.
  44. Bourinet E, Alloui A, Monteil A, et al. Silencing of the Ca(v)3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 2005; 24 : 315–24.
  45. Burian M, Geisslinger G. COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites. Pharmacol Ther 2005; 107 : 139–54.
  46. Coluzzi F, Mattia C. Mechanism-based treatment in chronic neuropathic pain : the role of antidepressants. Curr Pharm Des 2005; 11 : 2945–60.
  47. Eglen RM, Hunter JC, Dray A. Ions in the fire : recent ion-channel research and approaches to pain therapy. Trends Pharmacol Sci 1999; 20 : 337–42.
  48. Jarvis MF, Burgard EC, McGaraughty S, et al. A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci USA 2002; 99 : 17179–84.
  49. Vyklicky L, Knotkova-Urbancova H, Vitaskova Z, et al. Inflammatory mediators at acidic pH activate capsaicin receptors in cultured sensory neurons from newborn rats. J Neurophysiol 1998; 79 : 670–6.
  50. Voilley N. Acid-sensing ion channels (ASICs) : new targets for the analgesic effects of non-steroid anti-inflammatory drugs (NSAIDs). Curr Drug Targets Inflamm Allergy 2004; 3 : 71–9.
  51. Wilson JA, Garry EM, Anderson HA, et al. NMDA receptor antagonist treatment at the time of nerve injury prevents injury-induced changes in spinal NR1 and NR2B subunit expression and increases the sensitivity of residual pain behaviours to subsequently administered NMDA receptor antagonists. Pain 2005; 117 : 421–32.
  52. Lossignol DA, Obiols-Portis M, Body JJ. Successful use of ketamine for intractable cancer pain. Support Care Cancer 2005; 13 : 188–93.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.