Free Access
Med Sci (Paris)
Volume 21, Number 8-9, Août–Septembre 2005
Page(s) 722 - 729
Section M/S revues
Published online 15 August 2005
  1. Lescuyer P, Chevallet M, Rabilloud T. Concepts and therapeutic perspectives of proteomics. Med Sci (Paris) 2004; 20 : 587–92. [Google Scholar]
  2. Lim MS, Elenitoba-Johnson KS. Proteomics in pathology research. Lab Invest 2004; 84 : 1227–44. [Google Scholar]
  3. Chong BE, Lubman DM, Rosenspire A, Miller F. Protein profiles and identification of high performance liquid chromatography isolated proteins of cancer cell lines using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 1998; 12 : 1986–93. [Google Scholar]
  4. O’Neil KA, Miller FR, Barder TJ, Lubman DM. Profiling the progression of cancer: separation of microsomal proteins in MCF10 breast epithelial cell lines using nonporous chromatophoresis. Proteomics 2003; 3 : 1256–69. [Google Scholar]
  5. Zhu K, Kim J, Yoo C, et al. High sequence coverage of proteins isolated from liquid separations of breast cancer cells using capillary electrophoresis-time-of-flight MS and MALDI-TOF MS mapping. Anal Chem 2003; 75 : 6209–17. [Google Scholar]
  6. Issaq HJ, Veenstra TD, Conrads TP, Felschow D. The SELDI-TOF MS approach to proteomics : protein profiling and biomarker identification. Biochem Biophys Res Commun 2002; 292 : 587–92. [Google Scholar]
  7. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002; 359 : 572–7. [Google Scholar]
  8. Diamandis EP. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool : opportunities and potential limitations. Mol Cell Proteomics 2004; 3 : 367–78. [Google Scholar]
  9. Zhang Z, Bast RC, Jr., Yu Y, et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 2004; 64 : 5882–90. [Google Scholar]
  10. Diamandis EP. Proteomic patterns in serum and identification of ovarian cancer. Lancet 2002; 360 : 170 ; author reply 170–1. [Google Scholar]
  11. Diamandis EP. Analysis of serum proteomic patterns for early cancer diagnosis : drawing attention to potential problems. J Natl Cancer Inst 2004; 96 : 353–6. [Google Scholar]
  12. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420 : 860–7. [Google Scholar]
  13. Mehta AI, Ross S, Lowenthal MS, et al. Biomarker amplification by serum carrier protein binding. Dis Markers 2003; 19 : 1–10. [Google Scholar]
  14. Liotta LA, Ferrari M, Petricoin E. Clinical proteomics: written in blood. Nature 2003; 425 : 905. [Google Scholar]
  15. Mok SC, Chao J, Skates S, et al. Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst 2001; 93 : 1458–64. [Google Scholar]
  16. Matrisian LM, Sledge GW, Jr., Mohla S. Extracellular proteolysis and cancer: meeting summary and future directions. Cancer Res 2003; 63 : 6105–9. [Google Scholar]
  17. Yousef GM, Diamandis EP. The new human tissue kallikrein gene family : structure, function, and association to disease. Endocrinol Rev 2001; 22 : 184–204. [Google Scholar]
  18. Petricoin E, 3rd, Liotta LA. Counterpoint : the vision for a new diagnostic paradigm. Clin Chem 2003; 49 : 1276–8. [Google Scholar]
  19. Diamandis EP. Point : proteomic patterns in biological fluids : do they represent the future of cancer diagnostics ? Clin Chem 2003; 49: 1272–5. [Google Scholar]
  20. Solassol J, Marin P, Demettre E, et al. Proteomic detection of prostate-specific antigen using a serum fractionation procedure : potential implication for new low-abundance cancer biomarkers detection. Anal Biochem 2005; 338 : 26–31. [Google Scholar]
  21. Merrell K, Southwick K, Graves SW, et al. Analysis of low-abundance, low-molecular-weight serum proteins using mass spectrometry. J Biomol Tech 2004; 15 : 238–48. [Google Scholar]
  22. Wang YY, Cheng P, Chan DW. A simple affinity spin tube filter method for removing high-abundant common proteins or enriching low-abundant biomarkers for serum proteomic analysis. Proteomics 2003; 3 : 243–8. [Google Scholar]
  23. Govorukhina NI, Keizer-Gunnink A, Van der Zee AG, et al. Sample preparation of human serum for the analysis of tumor markers. Comparison of different approaches for albumin and gamma-globulin depletion. J Chromatogr A 2003; 1009 : 171–8. [Google Scholar]
  24. Petricoin EF, 3rd, Ornstein DK, Paweletz CP, et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 2002; 94 : 1576–8. [Google Scholar]
  25. Kozak KR, Amneus MW, Pusey SM, et al. Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips : potential use in diagnosis and prognosis. Proc Natl Acad Sci USA 2003; 100 : 12343–8. [Google Scholar]
  26. Ye B, Cramer DW, Skates SJ, et al. Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer : identification and characterization using proteomic profiling and mass spectrometry. Clin Cancer Res 2003; 9 : 2904–11. [Google Scholar]
  27. Adam BL, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 2002; 62 : 3609–14. [Google Scholar]
  28. Qu Y, Adam BL, Yasui Y, et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem 2002; 48 : 1835–43. [Google Scholar]
  29. Banez LL, Prasanna P, Sun L, et al. Diagnostic potential of serum proteomic patterns in prostate cancer. J Urol 2003; 170 : 442–6. [Google Scholar]
  30. Lehrer S, Roboz J, Ding H, et al. Putative protein markers in the sera of men with prostatic neoplasms. BJU Int 2003; 92 : 223–5. [Google Scholar]
  31. Hlavaty JJ, Partin AW, Shue MJ, et al. Identification and preliminary clinical evaluation of a 50.8-kDa serum marker for prostate cancer. Urology 2003; 61 : 1261–5. [Google Scholar]
  32. Cazares LH, Adam BL, Ward MD, et al. Normal, benign, preneoplastic, and malignant prostate cells have distinct protein expression profiles resolved by surface enhanced laser desorption/ionization mass spectrometry. Clin Cancer Res 2002; 8 : 2541–52. [Google Scholar]
  33. Wellmann A, Wollscheid V, Lu H, et al. Analysis of microdissected prostate tissue with ProteinChip arrays: a way to new insights into carcinogenesis and to diagnostic tools. Int J Mol Med 2002; 9 : 341–7. [Google Scholar]
  34. Koopmann J, Zhang Z, White N, et al. Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry. Clin Cancer Res 2004; 10 : 860–8. [Google Scholar]
  35. Rosty C, Christa L, Kuzdzal S, et al. Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res 2002; 62 : 1868–75. [Google Scholar]
  36. Vlahou A, Laronga C, Wilson L, et al. A novel approach toward development of a rapid blood test for breast cancer. Clin Breast Cancer 2003; 4 : 203–9. [Google Scholar]
  37. Li J, Zhang Z, Rosenzweig J, et al. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 2002; 48 : 1296–304. [Google Scholar]
  38. Becker S, Cazares LH, Watson P, et al. Surfaced-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) differentiation of serum protein profiles of BRCA-1 and sporadic breast cancer. Ann Surg Oncol 2004; 11 : 907–14. [Google Scholar]
  39. Pusztai L, Gregory BW, Baggerly KA, et al. Pharmacoproteomic analysis of prechemotherapy and postchemotherapy plasma samples from patients receiving neoadjuvant or adjuvant chemotherapy for breast carcinoma. Cancer 2004; 100 : 1814–22. [Google Scholar]
  40. Paweletz CP, Trock B, Pennanen M, et al. Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF : potential for new biomarkers to aid in the diagnosis of breast cancer. Dis Markers 2001; 17 : 301–7. [Google Scholar]
  41. Sauter ER, Shan S, Hewett JE, et al. Proteomic analysis of nipple aspirate fluid using SELDI-TOF-MS. Int J Cancer 2004; 17 : 17. [Google Scholar]
  42. Kuerer HM, Coombes KR, Chen JN, et al. Association between ductal fluid proteomic expression profiles and the presence of lymph node metastases in women with breast cancer. Surgery 2004; 136 : 1061–9. [Google Scholar]
  43. Zhukov TA, Johanson RA, Cantor AB, et al. Discovery of distinct protein profiles specific for lung tumors and pre-malignant lung lesions by SELDI mass spectrometry. Lung Cancer 2003; 40 : 267–79. [Google Scholar]
  44. Xiao X, Liu D, Tang Y, et al. Development of proteomic patterns for detecting lung cancer. Dis Markers 2003; 19 : 33–9. [Google Scholar]
  45. Rogers MA, Clarke P, Noble J, et al. Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis : identification of key issues affecting potential clinical utility. Cancer Res 2003; 63 : 6971–83. [Google Scholar]
  46. Won Y, Song HJ, Kang TW, et al. Pattern analysis of serum proteome distinguishes renal cell carcinoma from other urologic diseases and healthy persons. Proteomics 2003; 3 : 2310–6. [Google Scholar]
  47. Soltys SG, Le QT, Shi G, et al. The use of plasma surface-enhanced laser desorption/ionization time-of-flight mass spectrometry proteomic patterns for detection of head and neck squamous cell cancers. Clin Cancer Res 2004; 10 : 4806–12. [Google Scholar]
  48. Wadsworth JT, Somers KD, Stack BC Jr, et al. Identification of patients with head and neck cancer using serum protein profiles. Arch Otolaryngol Head Neck Surg 2004; 130 : 98–104. [Google Scholar]
  49. Melle C, Ernst G, Schimmel B, et al. Biomarker discovery and identification in laser microdissected head and neck squamous cell carcinoma with ProteinChip(R) technology, two-dimensional gel electrophoresis, tandem mass spectrometry, and immunohistochemistry. Mol Cell Proteomics 2003; 2 : 443–52. [Google Scholar]
  50. Melle C, Kaufmann R, Hommann M, et al. Proteomic profiling in microdissected hepatocellular carcinoma tissue using ProteinChip technology. Int J Oncol 2004; 24 : 885–91. [Google Scholar]
  51. Wilson LL, Tran L, Morton DL, Hoon DS. Detection of differentially expressed proteins in early-stage melanoma patients using SELDI-TOF mass spectrometry. Ann NY Acad Sci 2004; 1022 : 317–22. [Google Scholar]
  52. Vlahou A, Schellhammer PF, Mendrinos S, et al. Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am J Pathol 2001; 158 : 1491–502. [Google Scholar]
  53. Krieg RC, Fogt F, Braunschweig T, et al. ProteinChip array analysis of microdissected colorectal carcinoma and associated tumor stroma shows specific protein bands in the 3.4 to 3.6 kDa range. Anticancer Res 2004; 24 : 1791–6. [Google Scholar]
  54. Shiwa M, Nishimura Y, Wakatabe R, et al. Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform. Biochem Biophys Res Commun 2003; 309 : 18–25. [Google Scholar]
  55. Chen YD, Zheng S, Yu JK, Hu X. Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from healthy population. Clin Cancer Res 2004; 10 : 8380–5. [Google Scholar]
  56. Wong YF, Cheung TH, Lo KW, et al. Protein profiling of cervical cancer by protein-biochips: proteomic scoring to discriminate cervical cancer from normal cervix. Cancer Lett 2004; 211 : 227–34. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.