Free Access
Med Sci (Paris)
Volume 21, Number 4, Avril 2005
Page(s) 384 - 389
Section M/S revues
Published online 15 April 2005
  1. Kornberg RD. Structure of chromatin. Annu Rev Biochem 1977; 46 : 931–54. [Google Scholar]
  2. Wolffe A. Chromatin : structure and function, 3rd ed. London-San Diego, California : Academic Press, 1998. [Google Scholar]
  3. Luger K. Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev 2003; 13 : 127–35. [Google Scholar]
  4. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16 : 6–21. [Google Scholar]
  5. Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293 : 1074–80. [Google Scholar]
  6. Turner BM. Histone acetylation and an epigenetic code. BioEssays 2000; 22 : 836–45. [Google Scholar]
  7. Turner BM. Cellular memory and the histone code. Cell 2002; 111 : 285–91. [Google Scholar]
  8. Henikoff S, Furuyama T, Ahmad K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet 2004; 20 : 320–6. [Google Scholar]
  9. Bonaldi T, Imhof A, Regula JT. A combination of different mass spectroscopic techniques for the analysis of dynamic changes of histone modifications. Proteomics 2004; 4 : 1382–96. [Google Scholar]
  10. Freitas MA, Sklenar AR, Parthun MR. Application of mass spectrometry to the identification and quantification of histone post-translational modifications. J Cell Biochem 2004; 92 : 691–700. [Google Scholar]
  11. Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119 : 941–53. [Google Scholar]
  12. Wang Y, Wysocka J, Sayegh J, et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 2004; 306 : 279–83. [Google Scholar]
  13. Cuthbert GL, Daujat S, Snowden AW, et al. Histone deimination antagonizes arginine methylation. Cell 2004; 118 : 545–53. [Google Scholar]
  14. Holliday R. Epigenetics comes of age in the twentyfirst century. J Genet 2002; 81 : 1–4. [Google Scholar]
  15. Franklin SG, Zweidler A. Non-allelic variants of histones 2a, 2b and 3 in mammals. Nature 1977; 266 : 273–5. [Google Scholar]
  16. Ahmad K, Henikoff S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 2002; 9 : 1191–200. [Google Scholar]
  17. Wu RS, Tsai S, Bonner WM. Patterns of histone variant synthesis can distinguish G0 from G1 cells. Cell 1982; 31 : 367–74. [Google Scholar]
  18. Zalensky AO, Siino JS, Gineitis AA, et al. Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization. J Biol Chem 2002; 277 : 43474–80. [Google Scholar]
  19. Chadwick BP, Willard HF. A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol 2001; 152 : 375–84. [Google Scholar]
  20. Perche PY, Robert-Nicoud M, Khochbin S, Vourc’h C. Différenciation du nucléosome : le rôle des variants de l’histone H2A. Med Sci (Paris) 2003; 19 : 1137–45. [Google Scholar]
  21. Sullivan KF. A solid foundation : functional specialization of centromeric chromatin. Curr Opin Genet Dev 2001; 11 : 182–8. [Google Scholar]
  22. Janicki SM, Tsukamoto T, Salghetti SE, et al. From silencing to gene expression : real-time analysis in single cells. Cell 2004; 116 : 683–98. [Google Scholar]
  23. McKittrick E, Gafken PR, Ahmad K, Henikoff S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci USA 2004; 101 : 1525–30. [Google Scholar]
  24. Kaufman PD, Almouzni G. DNA replication, nucleotide excision repair and nucleosome assembly. In : Elgin SCR, Workman JL, eds. Chromatin structure and gene expression. New York : Oxford University Press, 2000. [Google Scholar]
  25. Krogan NJ, Keogh MC, Datta N, et al. A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 2003; 12 : 1565–76. [Google Scholar]
  26. Mizuguchi G, Shen X, Landry J, et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 2004; 303 : 343–8. [Google Scholar]
  27. Ray-Gallet D, Quivy JP, Scamps C, et al. HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol Cell 2002; 9 : 1091–100. [Google Scholar]
  28. Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 2004; 116 : 51–61. [Google Scholar]
  29. Hake SB, Xiao A, Allis CD. Linking the epigenetic language of covalent histone modifications to cancer. Br J Cancer 2004; 90 : 761–9. [Google Scholar]
  30. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429 : 457–63. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.