Free Access
Med Sci (Paris)
Volume 21, Number 3, Mars 2005
Page(s) 261 - 266
Section M/S revues
Published online 15 March 2005
  1. Pidoux AL, Allshire RC. Centromeres : getting a grip of chromosomes. Curr Opin Cell Biol 2000; 2 : 308–19. [Google Scholar]
  2. Fukagawa T. Centromere DNA, proteins and kinetochore assembly in vertebrates cells. Chrom Res 2004; 12 : 557–67. [Google Scholar]
  3. Roos UP. Light and electron microscopy of rat kangaroo cell in mitosis II kinetochore structure and function. Chromosoma 1973; 4 : 195–220. [Google Scholar]
  4. Mehes K, Bühler EM. Premature centromere division. Am J Med Genet 1995; 56 : 76–9. [Google Scholar]
  5. Fitzgerald H, Archer SZ, Morris CM. Evidence for the repeat primary non disjunction of Chr-1as the result of premature centromere division. Hum Genet 1986; 72 : 58–62. [Google Scholar]
  6. Vig BK. Sequence of centromere separation : orderly separation of multicentric chromosomes in mouse cells. Chromosoma 1984; 90 : 39–45. [Google Scholar]
  7. Mehes G, Tarnok K, Pajor L, Mehes K. Objective analysis of centromere separation. Hum Genet 1996; 97 : 365–6. [Google Scholar]
  8. Ghosh S, Paweletz N, Schroeter D. Failure of centromere separation leads to formation of diplochromosomes in next mitosis in okadaic acid treated HeLa cells. Cell Biol Int 1993; 17 : 949–52. [Google Scholar]
  9. Van Hooser AA, Mancini M, Allis CD, et al. The mammalian centromer : structural domains and the attenuation of chromatin modelling. FASEB J 1999; 13 (suppl 2) : S216–20. [Google Scholar]
  10. Rattner JB. The structure of mamalian centromere. BioEssays 1991; 13 : 51–6. [Google Scholar]
  11. Wheatley SP, Kandels-Lewis SE, Adams RR, et al. INCENP binds directly to tubulin and requires dynamic microtubules to target to the cleavage furrow. Exp Cell Res 2001; 262 : 122–7. [Google Scholar]
  12. Hirano T. SMC protein complexes and higher order chromosomes dynamics. Curr Opin Cell Biol 1998; 10 : 317–22. [Google Scholar]
  13. Nicklas RB. Measurements of the force produced by the mitotic spindle in anaphase. J Cell Biol 1983; 987 : 542–8. [Google Scholar]
  14. Rieder CL, Cole RW, Khodjakov A, Sluder G. The chekpoint delaying anaphase in reponse to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochore. J Cell Biol 1995; 130 : 941–8. [Google Scholar]
  15. Shelby RD, Hahn KM, Sullivan KF. Dynamic elastic behavior of α-satellite DNA domains visualized in situ in living human cells. J Cell Biol 1996; 135 : 545–57. [Google Scholar]
  16. Lan W, Zhang X, Kline-Smith SL, et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerisation activity. Curr Biol 2004; 14 : 273–86. [Google Scholar]
  17. Yanagida M. Frontier questions about sister chromatid separation in anaphase. BioEssays 1995; 17 : 519–26. [Google Scholar]
  18. Koshland D, Guacci V. Sister chromatid cohesion : the beginning of a long and beautiful relationships. Curr Opin Cell Biol 2000; 12 : 297–301. [Google Scholar]
  19. Michaelis C, Ciosk R, Nasmyth K. Cohesins : chromosomal proteins that prevent premature separation of sister chromatids. Cell 1997; 91 : 35–45. [Google Scholar]
  20. Hearing CH, Nasmyth K. Building and breaking bridges between sisters chromatids. BioEssays 2003; 25 : 1178–91. [Google Scholar]
  21. Tanaka T, Fuchs J, Loidl J, Nasmyth K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resist their precocious separation. Nat Cell Biol 2000; 2 : 492–5. [Google Scholar]
  22. Campbell JL, Cohen-Fix O. Chromosome cohesion : ring around the sisters. Trends Biochem Sci 2002; 27 : 492–5. [Google Scholar]
  23. Bernard P, Allshire RC. Centromeres become unstuck without heterochromatin. Trends Cell Biol 2002; 12 : 419–24. [Google Scholar]
  24. Losada J, Hirano T. Intermolecular DNA interactions stimulated by the cohesion complex in vitro. Implications for sister chromatides cohesion. Curr Biol 2001; 11 : 268–72. [Google Scholar]
  25. Claussen U, Mazur A, Rubtsov N. Chromosomes are highly elastic and can be stretched. Cytogenet Cell Genet 1994; 66 : 120–5. [Google Scholar]
  26. Houchmandzadeh B, Marko JF, Chatenay D, Libchaber L. Elasticity and structure of the eukaryotic chromosome studied by micromanipulation and micropipette aspiration. J Cell Biol 1997; 139 : 1–12. [Google Scholar]
  27. Houchmandzadeh B, Dimitrov S. Elasticity measurments show the existence of thin rigid cores inside mitotic chromosomes. J Cell Biol 1999; 145 : 215–23. [Google Scholar]
  28. Machado C, Andrew D. D-titin : a giant protein with dual roles in chromosomes and muscles. J Cell Biol 2000; 151 : 639–52. [Google Scholar]
  29. Machado C, Sunkel CE, Andrew D. Human antibodies reveal titin as chromosomal protein. J Cell Biol 1998; 141 : 321–33. [Google Scholar]
  30. Astier C, Labbe JP, Roustan C, Benyamin Y. Effect of different enzymatic treatments on the release of titin fragments from rabbit skeletal myofibrils. Biochem J 1993; 293 : 731–4. [Google Scholar]
  31. Astier C, Raynaud F, Lebart MC, et al. Binding of the native titin fragments to actin is regulated by PIP2. FEBS Lett 1998; 429 : 95–8. [Google Scholar]
  32. Runger-Brandle E, Chapponnier C, Gabbiani G. Intranuclear injection of anti-actin antibodies into Xenopus oocytes bloks chromosomes condensation. Nature 1979; 282 : 320–1. [Google Scholar]
  33. Silverman RV, Forer A. Evidence that actin and myosin are involved in the polarward flux of tubulin in metaphase kinetochore microtubules of crane-fly spermatocytes. J Cell Sci 2000; 113 : 597–609. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.